Pause point spectra in DNA constant-force unzipping.

نویسندگان

  • J D Weeks
  • J B Lucks
  • Y Kafri
  • C Danilowicz
  • D R Nelson
  • M Prentiss
چکیده

Under constant applied force, the separation of double-stranded DNA into two single strands is known to proceed through a series of pauses and jumps. Given experimental traces of constant-force unzipping, we present a method whereby the locations of pause points can be extracted in the form of a pause point spectrum. A simple theoretical model of DNA constant-force unzipping is presented, which generates theoretical pause point spectra through Monte Carlo simulation of the unzipping process. The locations of peaks in the experimental and theoretical pause point spectra are found to be nearly coincident below 6000 basepairs for unzipping the bacteriophage lambda-genome. The model only requires the sequence, temperature, and a set of empirical basepair binding and stacking energy parameters, and the good agreement with experiment suggests that pause point locations are primarily determined by the DNA sequence. The model is also used to predict pause point spectra for the bacteriophage phi X174 genome. The algorithm for extracting the pause point spectrum might also be useful for studying related systems which exhibit pausing behavior such as molecular motors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanopore unzipping of individual DNA hairpin molecules.

We have used the nanometer scale alpha-Hemolysin pore to study the unzipping kinetics of individual DNA hairpins under constant force or constant loading rate. Using a dynamic voltage control method, the entry rate of polynucleotides into the pore and the voltage pattern applied to induce hairpin unzipping are independently set. Thus, hundreds of unzipping events can be tested in a short period...

متن کامل

DNA unzipped under a constant force exhibits multiple metastable intermediates.

Single molecule studies, at constant force, of the separation of double-stranded DNA into two separated single strands may provide information relevant to the dynamics of DNA replication. At constant applied force, theory predicts that the unzipped length as a function of time is characterized by jumps during which the strands separate rapidly, followed by long pauses where the number of separa...

متن کامل

Unzipping DNA from the condensed globule state-effects of unraveling.

We have studied theoretically the unzipping of a double-stranded DNA from a condensed globule state by an external force. At constant force, we found that the double-stranded DNA unzips an at critical force Fc and the number of unzipped monomers M goes as M approximately (Fc - F)-3, for both the homogeneous and heterogeneous double-stranded DNA sequence. This is different from the case of unzip...

متن کامل

Unzipping dynamics of long DNAs.

The two strands of the DNA double helix can be "unzipped" by the application of approximately 15 pN force. We analyze the dynamics of unzipping and rezipping for the case where the molecule ends are separated and reapproached at constant velocity. For unzipping of 50-kilobase DNAs at less than about 1000 bases per second, thermal-equilibrium-based theory applies. However, for higher unzipping v...

متن کامل

Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins.

Single-molecule force experiments provide powerful new tools to explore biomolecular interactions. Here, we describe a systematic procedure for extracting kinetic information from force-spectroscopy experiments, and apply it to nanopore unzipping of individual DNA hairpins. Two types of measurements are considered: unzipping at constant voltage, and unzipping at constant voltage-ramp speeds. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2005