Ergodic Theorem for Stabilization of a Hyperbolic PDE Inspired by Age-Structured Chemostat

نویسندگان

  • Iasson Karafyllis
  • Michael Malisoff
  • Miroslav Krstic
چکیده

We study a feedback stabilization problem for a first-order hyperbolic partial differential equation. The problem is inspired by the stabilization of equilibrium age profiles for an age-structured chemostat, using the dilution rate as the control. Two distinguishing features of the problem are that (a) the PDE has a multiplicative (instead of an additive) input and (b) the state is fed back to the inlet boundary. We provide a sampled-data feedback that ensures stabilization under arbitrarily sparse sampling and that satisfies input constraints. Our chemostat feedback does not require measurement of the age profile, nor does it require exact knowledge of the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Integral Delay Equations and Stabilization of Age-Structured Models

We present bounded dynamic (but observer-free) output feedback laws that achieve global stabilization of equilibrium profiles of the partial differential equation (PDE) model of a simplified, age-structured chemostat model. The chemostat PDE state is positive-valued, which means that our global stabilization is established in the positive orthant of a particular function space—a rather non-stan...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Yield trajectory tracking for hyperbolic age-structured population systems

For population systems modeled by age-structured hyperbolic partial differential equations (PDEs) that are bilinear in the input and evolve with a positive-valued infinite-dimensional state, global stabilization of constant yield set points was achieved in prior work. Seasonal demands in biotechnological production processes give rise to time-varying yield references. For the proposed control o...

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.04321  شماره 

صفحات  -

تاریخ انتشار 2015