Conformational adaptation and selective adatom capturing of tetrapyridyl-porphyrin molecules on a copper (111) surface.

نویسندگان

  • Willi Auwärter
  • Florian Klappenberger
  • Alexander Weber-Bargioni
  • Agustin Schiffrin
  • Thomas Strunskus
  • Christof Wöll
  • Yan Pennec
  • Andreas Riemann
  • Johannes V Barth
چکیده

We present a combined low-temperature scanning tunneling microscopy and near-edge X-ray adsorption fine structure study on the interaction of tetrapyridyl-porphyrin (TPyP) molecules with a Cu(111) surface. A novel approach using data from complementary experimental techniques and charge density calculations allows us to determine the adsorption geometry of TPyP on Cu(111). The molecules are centered on "bridge" sites of the substrate lattice and exhibit a strong deformation involving a saddle-shaped macrocycle distortion as well as considerable rotation and tilting of the meso-substituents. We propose a bonding mechanism based on the pyridyl-surface interaction, which mediates the molecular deformation upon adsorption. Accordingly, a functionalization by pyridyl groups opens up pathways to control the anchoring of large organic molecules on metal surfaces and tune their conformational state. Furthermore, we demonstrate that the affinity of the terminal groups for metal centers permits the selective capture of individual iron atoms at low temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for the formation of an intermediate complex in the direct metalation of tetra(4-bromophenyl)-porphyrin on the Cu(111) surface.

A strong molecule-surface interaction between free-base-tetra(4-bromophenyl)-porphyrin and Cu(111) results in a distortion of both the molecule and the underlying copper surface in the vicinity of the molecule. This in turn leads to the formation of an intermediate complex due to bonding between the iminic nitrogens and surface copper atoms.

متن کامل

Selective Magnetic Removal of Pb(II) from Aqueous Solution by Porphyrin Linked-Magnetic Nanoparticles

The discharge of lead containing effluents into the environment and water bodies is harmful for the human, animals, aquatic flora and fauna. Herein, a novel surface engineered magnetic nanoparticle for removing Pb2+  ions was studied. After surface modification of the magnetite by 3-amino-propyltriethoxysilane (APTES) magnetic nanoparticles with covalently linked porphyrins were synthesize...

متن کامل

Potentiometric detection and removal of copper using porphyrins

BACKGROUND Copper is an essential trace element with a great importance in industry, environment and biological systems. The great advantage of ion-selective sensors in comparison with other proposed techniques is that they are measuring the free metal ion activity which is responsible for their toxicity. Porphyrins are known to be among the best ionophores in formulation of ion-selective senso...

متن کامل

Two‐Dimensional Ketone‐Driven Metal–Organic Coordination on Cu(111)

Two-dimensional metal-organic nanostructures based on the binding of ketone groups and metal atoms were fabricated by depositing pyrene-4,5,9,10-tetraone (PTO) molecules on a Cu(111) surface. The strongly electronegative ketone moieties bind to either copper adatoms from the substrate or codeposited iron atoms. In the former case, scanning tunnelling microscopy images reveal the development of ...

متن کامل

Localization of the Cu111 surface state by single Cu adatoms.

The Cu adatom-induced localization of the two-dimensional Shockley surface state at the Cu(111) surface was identified from experimental and simulated scanning tunneling microscopy spectra. The localization gives rise to a resonance located just below the surface state band edge. The adatom-induced surface state localization is discussed in terms of the existence theorem for bound states in any...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 36  شماره 

صفحات  -

تاریخ انتشار 2007