A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process
نویسندگان
چکیده
A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications.PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.
منابع مشابه
Fabrication and characterization of hexagonally patterned quasi-1D ZnO nanowire arrays
Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol-gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucl...
متن کاملAn illustration of photocatalytic properties of ZnO nanorods array films
ZnO nanorods array films were coated on a glass template through a two-step chemical process. First, a sol-gel spin coating method was used to produce a ZnO seed layer and after that, the ZnO nanorods arrays were grown on it through a low temperature aqueous method. Synthesized films were studied by scanning electron microscope (SEM) and X-ray diffractometer (XRD). X-ray diffraction results sho...
متن کاملAligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission
One-dimensional (1D) semiconducting nanoscale materials have attracted considerable attention because of their importance in understanding the fundamental properties of low dimensionality in materials as well as in nanodevice applications. Many methods, including vapor–liquid–solid (VLS), vapor–solid (VS), and solution-based, have been developed to synthesize 1D semiconducting nanoscale materia...
متن کاملMicrowave-assisted Decomposition of two Simple Zinc(II) Schiff Base Complexes: A Facile and Fast Route to Synthesize ZnO Nanostructures
ZnO nanorods and nanoparticles have been easily prepared via the decomposition of two simple Schiff base zinc (II) complexes, namely (N,N'–disalicylalethylenediamine)zince(II) and (N,N'–disalicylalphenylenediamine)zince(II) under microwave irradiation. The decomposition products of the complexes were characterized by FT-IR, XRD, SEM, EDX and UV-visible spectroscopy. FT-IR, XRD and EDX results ...
متن کاملPlasmon-polariton waves in nanofilms on one- dimensional photonic crystal surfaces
The propagation of bound optical waves along the surface of a one-dimensional (1D) photonic crystal (PC) structure is considered. A unified description of the waves in 1D PCs for both sand p-polarizations is done via an impedance approach. A general dispersion relation that is valid for optical surface waves with both polarizations is obtained, and conditions are presented for long-range propag...
متن کامل