Bayesian Inference in the Multinomial Logit Model

نویسندگان

  • Sylvia Frühwirth-Schnatter
  • Rudolf Frühwirth
چکیده

The multinomial logit model (MNL) possesses a latent variable representation in terms of random variables following a multivariate logistic distribution. Based on multivariate finite mixture approximations of the multivariate logistic distribution, various data-augmented Metropolis-Hastings algorithms are developed for a Bayesian inference of the MNL model. Zusammenfassung: Das multinomiale logistische (MNL) Regressionsmodell besitzt eine latente Variablendarstellung, die einen zufälligen Fehlerterm beinhaltet, der einer multivariaten logistischen Verteilung folgt. Aufbauend auf einer finiten Mischungsapproximation der multivariaten logistischen Verteilung werden mehrere Metropolis-Hastings-Verfahren für eine Bayes-Analyse im MNL Regressionsmodell entwickelt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov switching multinomial logit model: An application to accident-injury severities.

In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generate...

متن کامل

Crash Injury Severity Analysis Using Bayesian Ordered Probit Models

Understanding the underlying relationship between crash injury severity and factors such as driver’s characteristics, vehicle type, and roadway conditions is very important for improving traffic safety. Most previous studies on this topic used traditional statistical models such as ordered probit OP , multinomial logit, and nested logit models. This research introduces the Bayesian inference an...

متن کامل

On Rank-Ordered Nested Multinomial Logit Model and D-Optimal Design for this Model

In contrast to the classical discrete choice experiment, the respondent in a rank-order discrete choice experiment, is asked to rank a number of alternatives instead of the preferred one. In this paper, we study the information matrix of a rank order nested multinomial logit model (RO.NMNL) and introduce local D-optimality criterion, then we obtain Locally D-optimal design for RO.NMNL models in...

متن کامل

Working Paper Series Categorical Data Categorical Data

Categorical outcome (or discrete outcome or qualitative response) regression models are models for a discrete dependent variable recording in which of two or more categories an outcome of interest lies. For binary data (two categories) probit and logit models or semiparametric methods are used. For multinomial data (more than two categories) that are unordered, common models are multinomial and...

متن کامل

Modeling the behavior of disordered taxi drivers of Tehran for choosing passenger and destination

In this study, the manner of private taxis drivers has been investigated for choosing passenger and destination from a fixed point. Therefore, two models called Multinomial and Nested Logit Models have been utilized. The information gained by scrolling in 2016 is the input data, which are in the format of revealed preference, acquired by the verbal interview in Vanak Square in Tehran (Iran). Ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011