A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans.

نویسندگان

  • B van Swinderen
  • O Saifee
  • L Shebester
  • R Roberson
  • M L Nonet
  • C M Crowder
چکیده

The molecular mechanisms underlying general anesthesia are unknown. For volatile general anesthetics (VAs), indirect evidence for both lipid and protein targets has been found. However, no in vivo data have implicated clearly any particular lipid or protein in the control of sensitivity to clinical concentrations of VAs. Genetics provides one approach toward identifying these mechanisms, but genes strongly regulating sensitivity to clinical concentrations of VAs have not been identified. By screening existing mutants of the nematode Caenorhabditis elegans, we found that a mutation in the neuronal syntaxin gene dominantly conferred resistance to the VAs isoflurane and halothane. By contrast, other mutations in syntaxin and in the syntaxin-binding proteins synaptobrevin and SNAP-25 produced VA hypersensitivity. The syntaxin allelic variation was striking, particularly for isoflurane, where a 33-fold range of sensitivities was seen. Both the resistant and hypersensitive mutations decrease synaptic transmission; thus, the indirect effect of reducing neurotransmission does not explain the VA resistance. As assessed by pharmacological criteria, halothane and isoflurane themselves reduced cholinergic transmission, and the presynaptic anesthetic effect was blocked by the resistant syntaxin mutation. A single gene mutation conferring high-level resistance to VAs is inconsistent with nonspecific membrane-perturbation theories of anesthesia. The genetic and pharmacological data suggest that the resistant syntaxin mutant directly blocks VA binding to or efficacy against presynaptic targets that mediate anesthetic behavioral effects. Syntaxin and syntaxin-binding proteins are candidate anesthetic targets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance to volatile anesthetics by mutations enhancing excitatory neurotransmitter release in Caenorhabditis elegans.

The molecular mechanisms whereby volatile general anesthetics (VAs) disrupt behavior remain undefined. In Caenorhabditis elegans mutations in the gene unc-64, which encodes the presynaptic protein syntaxin 1A, produce large allele-specific differences in VA sensitivity. UNC-64 syntaxin normally functions to mediate fusion of neurotransmitter vesicles with the presynaptic membrane. The precise r...

متن کامل

An evolutionarily conserved presynaptic protein is required for isoflurane sensitivity in Caenorhabditis elegans.

BACKGROUND Volatile general anesthetics inhibit neurotransmitter release by an unknown mechanism. A mutation in the presynaptic soluble NSF attachment protein receptor (SNARE) protein syntaxin 1A was previously shown to antagonize the anesthetic isoflurane in Caenorhabditis elegans. The mechanism underlying this antagonism may identify presynaptic anesthetic targets relevant to human anesthesia...

متن کامل

Volatile anesthetic preconditioning present in the invertebrate Caenorhabditis elegans.

BACKGROUND Volatile anesthetics (VAs) have been found to induce a delayed protective response called preconditioning to subsequent hypoxic/ischemic injury. VA preconditioning has been primarily studied in canine and rodent heart. A more genetically tractable model of VA preconditioning would be extremely useful. Here, the authors report the development of the nematode Caenorhabditis elegans as ...

متن کامل

A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans.

The mechanism of action of volatile anesthetics is unknown. In Caenorhabditis elegans, mutations in the gene unc-1 alter anesthetic sensitivity. The protein UNC-1 is a close homologue of the mammalian protein stomatin. Mammalian stomatin is thought to interact with an as-yet-unknown ion channel to control sodium flux. Using both reporter constructs and translational fusion constructs for UNC-1 ...

متن کامل

Multiple sites of action of volatile anesthetics in Caenorhabditis elegans.

The mechanism and site(s) of action of volatile anesthetics are unknown. In all organisms studied, volatile anesthetics adhere to the Meyer-Overton relationship--that is, a ln-ln plot of the oil-gas partition coefficients versus the potencies yields a straight line with a slope of -1. This relationship has led to two conclusions about the site of action of volatile anesthetics. (i) It has prope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 5  شماره 

صفحات  -

تاریخ انتشار 1999