Infinitely Many Periodic Solutions for Variable Exponent Systems

نویسندگان

  • Xiaoli Guo
  • Mingxin Lu
  • Qihu Zhang
  • Marta Garcia-Huidobro
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

A VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS

The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...

متن کامل

Damped vibration problems with sign-changing nonlinearities: infinitely many periodic solutions

IN×N is theN×N identity matrix, q(t) ∈ L(R;R) is T-periodic and satisfies ∫ T  q(t)dt = , A(t) = [aij(t)] is aT-periodic symmetricN×N matrix-valued functionwith aij ∈ L∞(R;R) (∀i, j = , , . . . ,N ), B = [bij] is an antisymmetric N × N constant matrix, u = u(t) ∈ C(R,RN ), H(t,u) ∈ C(R × RN ,R) is T-periodic and Hu(t,u) denotes its gradient with respect to the u variable. In fact, there ...

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

Existence of Infinitely Many Periodic Solutions for Second-order Nonautonomous Hamiltonian Systems

By using minimax methods and critical point theory, we obtain infinitely many periodic solutions for a second-order nonautonomous Hamiltonian systems, when the gradient of potential energy does not exceed linear growth.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009