MicroRNA-92a Inhibition Attenuates Hypoxia/Reoxygenation-Induced Myocardiocyte Apoptosis by Targeting Smad7
نویسندگان
چکیده
BACKGROUND MicroRNAs (miRNAs) regulate a lot of physiological and pathological processes, including myocardial ischemia/reperfusion. Recent studies reported that knockdown of miR-92a could attenuate ischemia/reperfusion-induced myocardial injury. In the present study, we examined the potential anti-apoptotic effects of miR-92a in a rat myocardiocyte cell line, and the possible role of Smad7 in such actions. METHODOLOGY AND RESULTS In a preliminary bioinformatic analysis, we identified SMAD family member 7 (Smad7) as a potential target for miR-92a. A luciferase reporter assay indeed demonstrated that miR-92a could inhibit Smad7 expression. Myocardial ischemia/reperfusion was simulated in rat H9c2 cells with 24-h hypoxia followed by 12-h reoxygenation. Prior to hypoxia/reoxygenation, cells were transfected by miR-92a inhibitor. In some experiments, cells were co-transfected with siRNA-Smad7. The miR-92a inhibitor dramatically reduced the release of lactate dehydrogenase and malonaldehyde, and attenuated cardiomyocyte apoptosis. The miR-92a inhibitor increased SMAD7 protein level and decreased nuclear NF-κB p65 protein. Effects of the miR-92a inhibitor were attenuated by co-transfection with siRNA-Smad7. CONCLUSION Inhibiting miR-92a can attenuate myocardiocyte apoptosis induced by hypoxia/reoxygenation by targeting Smad7.
منابع مشابه
MicroRNA-15a inhibition protects against hypoxia/reoxygenation-induced apoptosis of cardiomyocytes by targeting mothers against decapentaplegic homolog 7
Myocardial ischemia/reperfusion (I/R) injury is a major pathological process in coronary heart disease and cardiac surgery, and is associated with aberrant microRNA (miR) expression. Previous studies have demonstrated that inhibition of miR-15a expression may ameliorate I/R‑induced myocardial injury. In the present study, the potential role and underlying mechanism of miR‑15a in hypoxia/reoxyge...
متن کاملMicroRNA-17-92a upregulation by estrogen leads to Bim targeting and inhibition of osteoblast apoptosis.
Anti-apoptotic effects of estrogen on osteoblasts are very important in the etiology of estrogen protection of the adult skeleton against bone loss. The mechanisms of this process are still not fully understood. Recent studies implicated an important role of microRNAs in estrogen-mediated responses in various cellular processes, including cell apoptosis and proliferation. Therefore, we hypothes...
متن کاملMicroRNA-214 protects against hypoxia/reoxygenation induced cell damage and myocardial ischemia/reperfusion injury via suppression of PTEN and Bim1 expression
BACKGROUND Myocardial apoptosis plays an important role in myocardial ischemia/reperfusion (I/R) injury. Activation of PI3K/Akt signaling protects the myocardium from I/R injury. This study investigated the role of miR-214 in hypoxia/reoxygenation (H/R)-induced cell damage in vitro and myocardial I/R injury in vivo. METHODS AND RESULTS H9C2 cardiomyoblasts were transfected with lentivirus exp...
متن کاملInhibition of miR-302 Suppresses Hypoxia-Reoxygenation-Induced H9c2 Cardiomyocyte Death by Regulating Mcl-1 Expression
MicroRNAs play important roles in cell proliferation, differentiation, and apoptosis, and their expression influences cardiomyocyte apoptosis resulting from ischemia-induced myocardial infarction. Here, we determined the role of miR expression in cardiomyocyte apoptosis during hypoxia and reoxygenation. The rat cardiomyocyte cell line H9c2 was incubated for 3 h in normal or hypoxia medium, foll...
متن کاملInhibition of microRNA-101 attenuates hypoxia/reoxygenation‑induced apoptosis through induction of autophagy in H9c2 cardiomyocytes.
Autophagy is a cellular self‑catabolic process responsible for the degradation of proteins and organelles. Autophagy is able to promote cell survival in response to stress, and increased autophagy amongst cardiomyocytes has been identified in conditions of heart failure, starvation and ischemia/reperfusion. However, the detailed regulatory mechanisms underlying autophagy in heart disease have r...
متن کامل