Asymptotic Normality of Single-Equation Estimators for the Case with a Large Number of Weak Instruments∗
نویسندگان
چکیده
This paper analyzes conditions under which various single-equation estimators are asymptotically normal in a simultaneous equations framework with many weak instruments. In particular, our paper adds to the many instruments asymptotic normality literature, including papers by Morimune (1983), Bekker (1994), Angrist and Krueger (1995), Donald and Newey (2001), Hahn, Hausman, and Kuersteiner (2001), and Stock and Yogo (2003). We consider the case where instrument weakness is such that rn, the rate of growth of the concentration parameter, is slower than Kn, the growth rate of the number of instruments, but such that √ Kn rn → 0 as n →∞. In this case, the rate of convergence is shown to be rn √ Kn . We also show that formulae for the asymptotic variances of various single-equation estimators are different from those obtained under assumptions of stronger instruments, i.e., cases where rn is assumed to grow at the same rate or at a faster rate than Kn. An interesting finding of this paper is that, for the case we study here, both the LIML and the Fuller estimators can be shown to be asymptotically more efficient than the B2SLS estimator not just for the case where the error distributions are assumed to be Gaussian but for all error distributions that lie within the elliptical family. JEL classification: C13, C31.
منابع مشابه
Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data
Kernel density estimators are the basic tools for density estimation in non-parametric statistics. The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in which the bandwidth is varied depending on the location of the sample points. In this paper, we initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...
متن کاملAn Alternative Way of Computing Efficient Instrumental Variable Estimators
A new way of constructing efficient semiparametric instrumental variable estimators is proposed. The method involves the combination of a large number of possibly inefficient estimators rather than combining the instruments into an optimal instrument function. The consistency and asymptotic normality is established for a class of estimators that are linear combinations of a set of √ n– consiste...
متن کاملAveraged Instrumental Variables Estimators
We develop averaged instrumental variables estimators as a way to deal with many weak instruments. We propose a weighted average of the preliminary k-class estimators, where each estimator is obtained using different subsets of the available instrumental variables. The averaged estimators are shown to be consistent and to satisfy asymptotic normality. Furthermore, its approximate mean squared e...
متن کاملFractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملAsymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution
Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...
متن کامل