Non-unique population dynamics: basic patterns

نویسندگان

  • Veijo Kaitala
  • Mikko Heino
چکیده

We review the basic patterns of complex non-uniqueness in simple discrete-time population dynamics models. We begin by studying a population dynamics model of a single species with a two-stage, two-habitat life cycle. We then explore in greater detail two ecological models describing host–macroparasite and host–parasitoid interspecific interactions. In general, several types of attractors, e.g. point equilibria vs. chaotic, periodic vs. quasiperiodic and quasiperiodic vs. chaotic attractors, may coexist in the same mapping. This non-uniqueness also indicates that the bifurcation diagrams, or the routes to chaos, depend on initial conditions and are therefore non-unique. The basins of attraction, defining the initial conditions leading to a certain attractor, may be fractal sets. The fractal structure may be revealed by fractal basin boundaries or by the patterns of self-similarity. The fractal basin boundaries make it more difficult to predict the final state of the system, because the initial values can be known only up to some precision. We conclude that non-unique dynamics, associated with extremely complex structures of the basin boundaries, can have a profound effect on our understanding of the dynamical processes of nature. © 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Numerical Analysis of Malaria- mTB- HIV/AIDS Co-infection (TECHNICAL NOTE)

In this paper, we develop a mathematical model to examine the transmission dynamics of curable malaria, curable mTB and non-curable HIV/AIDS and their co-infection. The size of population has been taken as varying due to the emigration of susceptible population. The total population is divided into five subclasses as susceptible, malaria infected, mTB infected, HIV infection and AIDS by assumin...

متن کامل

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

Population Dynamics of Iran from Sociological Approach

This paper examines intergenerational transmission associated with population dynamics from sociological approach. The discussion is based on the analysis of observations in a country that has experienced substantial changes in family formation resulting in one of the world's most spectacular falls in women's birth rate ever experienced in human history: Iran. Facing fundamental historical expe...

متن کامل

Stability ‎a‎nalysis of the transmission dynamics of an HBV model

‎Hepatitis B virus (HBV) infection is a major public health problem in the world today‎. ‎A mathematical model is formulated to describe the spread of hepatitis B‎, ‎which can be controlled by vaccination as well as treatment‎. ‎We study the dynamical behavior of the system with fixed control for both vaccination and treatment‎. ‎The results shows that the dynamics of the model is completely de...

متن کامل

The re-identification risk of Canadians from longitudinal demographics

BACKGROUND The public is less willing to allow their personal health information to be disclosed for research purposes if they do not trust researchers and how researchers manage their data. However, the public is more comfortable with their data being used for research if the risk of re-identification is low. There are few studies on the risk of re-identification of Canadians from their basic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000