Linker Flexibility Facilitates Module Exchange in Fungal Hybrid PKS-NRPS Engineering
نویسندگان
چکیده
Polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) each give rise to a vast array of complex bioactive molecules with further complexity added by the existence of natural PKS-NRPS fusions. Rational genetic engineering for the production of natural product derivatives is desirable for the purpose of incorporating new functionalities into pre-existing molecules, or for optimization of known bioactivities. We sought to expand the range of natural product diversity by combining modules of PKS-NRPS hybrids from different hosts, hereby producing novel synthetic natural products. We succeeded in the construction of a functional cross-species chimeric PKS-NRPS expressed in Aspergillus nidulans. Module swapping of the two PKS-NRPS natural hybrids CcsA from Aspergillus clavatus involved in the biosynthesis of cytochalasin E and related Syn2 from rice plant pathogen Magnaporthe oryzae lead to production of novel hybrid products, demonstrating that the rational re-design of these fungal natural product enzymes is feasible. We also report the structure of four novel pseudo pre-cytochalasin intermediates, niduclavin and niduporthin along with the chimeric compounds niduchimaeralin A and B, all indicating that PKS-NRPS activity alone is insufficient for proper assembly of the cytochalasin core structure. Future success in the field of biocombinatorial synthesis of hybrid polyketide-nonribosomal peptides relies on the understanding of the fundamental mechanisms of inter-modular polyketide chain transfer. Therefore, we expressed several PKS-NRPS linker-modified variants. Intriguingly, the linker anatomy is less complex than expected, as these variants displayed great tolerance with regards to content and length, showing a hitherto unreported flexibility in PKS-NRPS hybrids, with great potential for synthetic biology-driven biocombinatorial chemistry.
منابع مشابه
Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme
Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 ...
متن کاملThe biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase.
BACKGROUND The structural and catalytic similarities between modular nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) inspired us to search for a hybrid NRPS-PKS system. The antitumor drug bleomycin (BLM) is a natural hybrid peptide-polyketide metabolite, the biosynthesis of which provides an excellent opportunity to investigate intermodular communication between NRPS an...
متن کاملHybrid Peptide Polyketide Natu Prospects toward Engin
The structural and catalytic similarities between modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) inspired us to search for hybrid NRPS PKS systems. By examining the biochemical and genetic data known to date for the biosynthesis of hybrid peptide polyketide natural products, we show (1) that the same catalytic sites are conserved between the hybrid NRPS PKS and nor...
متن کاملCloning and characterization of the bleomycin biosynthetic gene cluster from Streptomyces verticillus ATCC15003.
Bleomycin (BLM) biosynthesis has been studied as a model for hybrid peptide-polyketide natural product biosynthesis. Cloning, sequencing, and biochemical characterization of the blm biosynthetic gene cluster from Streptomyces verticillus ATCC15003 revealed that (1) the BLM hybrid peptide-polyketide aglycon is assembled by the BLM megasynthetase that consists of both nonribosomal peptide synthet...
متن کاملMethylation-Dependent Acyl Transfer between Polyketide Synthase and Nonribosomal Peptide Synthetase Modules in Fungal Natural Product Biosynthesis
Biochemical studies of purified and dissected fungal polyketide synthase and nonribosomal peptide synthetase (PKS-NRPS) hybrid enzymes involved in biosynthesis of pseurotin and aspyridone indicate that one α-methylation step during polyketide synthesis is a prerequisite and a key checkpoint for chain transfer between PKS and NRPS modules. In the absence of the resulting γ-methyl feature, the co...
متن کامل