Picard Group of the E(2)-local Stable Homotopy Category at the Prime Three

نویسنده

  • KATSUMI SHIMOMURA
چکیده

Let L2 denote the stable homotopy category of v−1 2 BP -local spectra at the prime three. In [2], it is shown that the Picard group of L2 consisting of isomorphic classes of invertible spectra is isomorphic to either the direct sum of Z and Z/3 or the direct sum of Z and two copies of Z/3. In this paper, we conclude the Picard group is isomorphic to the latter group by showing the existence of an exotic invertible spectrum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INVERTIBLE SPECTRA IN THE E(n)-LOCAL STABLE HOMOTOPY CATEGORY

Suppose C is a category with a symmetric monoidal structure, which we will refer to as the smash product. Then the Picard category is the full subcategory of objects which have an inverse under the smash product in C, and the Picard group Pic(C) is the collection of isomorphism classes of such invertible objects. The Picard group need not be a set in general, but if it is then it is an abelian ...

متن کامل

Monoidality of Franke’s Exotic Model

We discuss the monoidal structure on Franke’s algebraic model for the K(p) -local stable homotopy category at odd primes and show that its Picard group is isomorphic to the integers. MSC: 55P42; 55P60; 55U35

متن کامل

On the algebraic classification of K-local spectra

In 1996, Jens Franke proved the equivalence of certain triangulated categories possessing an Adams spectral sequence. One particular application of this theorem is that the K(p)-local stable homotopy category at an odd prime can be described as the derived category of an abelian category. We explain this proof from a topologist’s point of view. In 1983 Bousfield published a paper about the cate...

متن کامل

A new family in the stable homotopy groups of spheres

Let $p$ be a prime number greater than three. In this paper, we prove the existence of a new family of homotopy elements in the stable homotopy groups of spheres $pi_{ast}(S)$ which is represented by $h_nh_mtilde{beta}_{s+2}in {rm Ext}_A^{s+4, q[p^n+p^m+(s+2)p+(s+1)]+s}(mathbb{Z}_p,mathbb{Z}_p)$ up to nonzero scalar in the Adams spectral sequence, where $ngeq m+2>5$, $0leq sExt}_A^{s+2,q[(s+2)p...

متن کامل

Detection of a nontrivial element in the stable homotopy groups of spheres

‎Let $p$ be a prime with $pgeq 7$ and $q=2(p-1)$‎. ‎In this paper‎ ‎we prove the existence of a nontrivial product of‎ ‎filtration $s+4$ in the stable homotopy groups of spheres‎. ‎This nontrivial‎ ‎product is shown to be represented up to a nonzero scalar by‎ ‎the product element $widetilde{gamma}_{s}b_{n-1}g_{0}in‎ ‎{Ext}_{mathcal{A}}^{s+4,(p^n+sp^2+sp+s)q+s-3}(mathbb{Z}/p,mathbb{Z}/p)$‎ ‎in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012