Selective chemical modification of Escherichia coli elongation factor G. N-Ethylmaleimide modification of a cysteine essential for nucleotide binding.

نویسندگان

  • M S Rohrbach
  • J W Bodley
چکیده

Escherichia coli Elongation Factor G is inhibited ireversibly by the chemical modification of 1 cysteine residue with N-ethylmaleimide. At pH 5.2, this cysteine is approximately 130 times more reactive than beta-mercaptoethanol toward N-ethylmaleimide. Inhibition is not prevented by either the ribosome or GTP alone at concentrations approximately equal to that of Elongation Factor G, but in combination they reduce the inhibition by 50%. Increasing the stability of the Elongation Factor G-ribosome-GDP complex by the addition of fusidec acid, completely protects against N-ethylmaleimide inhibition. The modified protein cannot form either the Elongation Factor G-ribosome-GMP-P(CH2)P or the Elongation Factor G-ribosome-GDP-fusidic acidcomplex. However, the modification had no effect on its ability to form the Elongation Factor G-ribosome complex. These results suggest that the cysteine residue modified by N-ethylmaleimide is at or near the nucleotide binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of active site residues of Escherichia coli fumarate reductase by site-directed mutagenesis.

Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The enzyme is structurally and catalytically similar to succinate dehydrogenase (succinate-ubiquinone oxidoreductase) from both procaryotes and eucaryotes. Both enzymes have been proposed to contai...

متن کامل

In vivo sulfhydryl modification of the ligand-binding site of Tsr, the Escherichia coli serine chemoreceptor.

The Escherichia coli chemoreceptor Tsr mediates an attractant response to serine. We substituted Cys for Thr-156, one of the residues involved in serine sensing. The mutant receptor Tsr-T156C retained serine- and repellent-sensing abilities. However, it lost serine-sensing ability when it was treated in vivo with sulfhydryl-modifying reagents such as N-ethylmaleimide (NEM). Serine protected Tsr...

متن کامل

The uncharacterized transcription factor YdhM is the regulator of the nemA gene, encoding N-ethylmaleimide reductase.

N-ethylmaleimide (NEM) has been used as a specific reagent of Cys modification in proteins and thus is toxic for cell growth. On the Escherichia coli genome, the nemA gene coding for NEM reductase is located downstream of the gene encoding an as-yet-uncharacterized transcription factor, YdhM. Disruption of the ydhM gene results in reduction of nemA expression even in the induced state, indicati...

متن کامل

Thiamine transport in Escherichia coli: the mechanism of inhibition by the sulfhydryl-specific modifier N-ethylmaleimide.

Active transport of thiamin (vitamin B(1)) into Escherichia coli occurs through a member of the superfamily of transporters known as ATP-binding cassette (ABC) transporters. Although it was demonstrated that the sulfhydryl-specific modifier N-ethylmaleimide (NEM) inhibited thiamin transport, the exact mechanism of this inhibition is unknown. Therefore, we have carried out a kinetic analysis of ...

متن کامل

The amino acid sequence of elongation factor Tu of Escherichia coli. The complete sequence.

The complete amino acid sequence of elongation factor Tu of Escherichia coli has been established by sequencing overlapping cyanogen bromide and tryptic peptides. Sequence analysis of peptides was done primarily by solid-phase Edman degradation. Elongation factor Tu is a single chain polypeptide composed of 393 amino acids (Mr = 43,225). Its NH2 terminus is blocked with an acetyl group, as dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 251 4  شماره 

صفحات  -

تاریخ انتشار 1976