GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons.
نویسندگان
چکیده
In the CNS, gamma-aminobutyric acid (GABA) affects neuronal activity through both the ligand-gated GABAA receptor channel and the G protein-coupled GABAB receptor. In the mature nervous system, both receptor subtypes decrease neural excitability, whereas in most neurons during development, the GABAA receptor increases neural excitability and raises cytosolic Ca2+ levels. We used Ca2+ digital imaging to test the hypothesis that GABAA receptor-mediated Ca2+ rises were regulated by GABAB receptor activation. In young, embryonic day 18, hypothalamic neurons cultured for 5 +/- 2 days in vitro, we found that cytosolic Ca2+ rises triggered by synaptically activated GABAA receptors were dramatically depressed (>80%) in a dose-dependent manner by application of the GABAB receptor agonist baclofen (100 nM-100 microM). Coadministration of the GABAB receptor antagonist 2-hydroxy-saclofen or CGP 35348 reduced the inhibitory action of baclofen. Administration of the GABAB antagonist alone elicited a reproducible Ca2+ rise in >25% of all synaptically active neurons, suggesting that synaptic GABA release exerts a tonic inhibitory tone on GABAA receptor-mediated Ca2+ rises via GABAB receptor activation. In the presence of tetrodotoxin the GABAA receptor agonist muscimol elicited robust postsynaptic Ca2+ rises that were depressed by baclofen coadministration. Baclofen-mediated depression of muscimol-evoked Ca2+ rises were observed in both the cell bodies and neurites of hypothalamic neurons taken at embryonic day 15 and cultured for three days, suggesting that GABAB receptors are functionally active at an early stage of neuronal development. Ca2+ rises elicited by electrically induced synaptic release of GABA were largely inhibited (>86%) by baclofen. These results indicate that GABAB receptor activation depresses GABAA receptor-mediated Ca2+ rises by both reducing the synaptic release of GABA and decreasing the postsynaptic Ca2+ responsiveness. Collectively, these data suggest that GABAB receptors play an important inhibitory role regulating Ca2+ rises elicited by GABAA receptor activation. Changes in cytosolic Ca2+ during early neural development would, in turn, profoundly affect a wide array of physiological processes, such as gene expression, neurite outgrowth, transmitter release, and synaptogenesis.
منابع مشابه
GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development.
In the mature nervous system excitatory neurotransmission mediated by glutamate is balanced by the inhibitory actions of GABA. However, during early development, GABA acting at the ligand-gated GABAA Cl- channel also exerts excitatory actions. This raises a question as to whether GABA can exert inhibitory activity during early development, possibly by a mechanism that involves activation of the...
متن کاملTransient Activation of GABAB Receptors Suppresses SK Channel Currents in Substantia Nigra Pars Compacta Dopaminergic Neurons
Dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) are richly innervated by GABAergic neurons. The postsynaptic effects of GABA on SNc DA neurons are mediated by a mixture of GABAA and GABAB receptors. Although activation of GABAA receptors inhibits spike generation, the consequences of GABAB receptor activation are less well characterized. To help fill this gap, perforated p...
متن کاملDifferent effects of tegmental GABAergic receptors on the expression of morphine-induced place preference in rat
In the present study, the effects of excitation and inhibition of GABAA and GABAB receptor subtypes on the expression of morphine-induced conditioned place preference (CPP) were investigated. For this purpose, male Wistar rats (250-300 g) were used in the experiments. Five days after surgical cannulation in the ventral tegmental area (VTA), different doses of morphine were injected into the ani...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملPresynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons.
GABA is the primary transmitter released by neurons of the suprachiasmatic nucleus (SCN), the circadian clock in the brain. Whereas GABAB receptor agonists exert a significant effect on circadian rhythms, the underlying mechanism by which GABAB receptors act in the SCN has remained a mystery. We found no GABAB receptor-mediated effect on slow potassium conductance, membrane potential, or input ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 3 شماره
صفحات -
تاریخ انتشار 1998