G-Protein types involved in calcium channel inhibition at a presynaptic nerve terminal.
نویسندگان
چکیده
The inhibition of presynaptic calcium channels via G-protein-dependent second messenger pathways is a key mechanism of transmitter release modulation. We used the calyx-type nerve terminal of the chick ciliary ganglion to examine which G-proteins are involved in the voltage-sensitive inhibition of presynaptic N-type calcium channels. Adenosine caused a prominent inhibition of the calcium current that was totally blocked by pretreatment with pertussis toxin (PTX), consistent with an exclusive involvement of G(o)/G(i) in the G-protein pathway. Immunocytochemistry was used to localize these G-protein types to the nerve terminal and its transmitter release face. We used two approaches to test for modulation by other G-protein types. First, we treated the terminals with ligands for a variety of G-protein-linked neurotransmitter receptor types that have been associated with different G-protein families. Although small inhibitory effects were observed, these could all be eliminated by PTX, indicating that in this terminal the G(i) family is the sole transmitter-induced G-protein inhibitory pathway. Second, we examined the kinetics of calcium channel inhibition by uncaging the nonselective and irreversible G-protein activator GTPgammaS, bypassing the receptors. A large fraction of the rapid GTPgammaS-induced inhibition persisted, consistent with a G(o)/G(i)-independent pathway. Immunocytochemistry identified G(q), G(11), G(12), and G(13) as potential PTX-insensitive second messengers at this terminal. Thus, our results suggest that whereas neurotransmitter-mediated calcium channel inhibition is mainly, and possibly exclusively, via G(o)/G(i), other rapid PTX-insensitive G-protein pathways exist that may involve novel, and perhaps transmitter-independent, activating mechanisms.
منابع مشابه
GTP-binding protein bg subunits mediate presynaptic calcium current inhibition by GABAB receptor
A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic g-aminobutyric acid type B receptors (GABAB receptors) or metabotropic glutamate receptors inhibits presynaptic PyQ-type Ca21 channel currents vi...
متن کاملIon channels in presynaptic nerve terminals and control of transmitter release.
The primary function of the presynaptic nerve terminal is to release transmitter quanta and thus activate the postsynaptic target cell. In almost every step leading to the release of transmitter quanta, there is a substantial involvement of ion channels. In this review, the multitude of ion channels in the presynaptic terminal are surveyed. There are at least 12 different major categories of io...
متن کاملCalcium currents recorded from a vertebrate presynaptic nerve terminal are resistant to the dihydropyridine nifedipine.
The influx of Ca ions into the presynaptic nerve terminal through ion channels is a key link between the action potential and the release of chemical transmitters. It is not clear, however, which types of Ca channel are involved in neurosecretion at vertebrate synapses. In particular, there is disagreement as to whether these channels are sensitive to dihydropyridine blockers, characteristic of...
متن کاملInhibition of synaptic transmission by neuropeptide Y in rat hippocampal area CA1: modulation of presynaptic Ca2+ entry.
Neuropeptide Y (NPY) agonists inhibit glutamate release by a presynaptic action at the CA3-CA1 synapse of rat hippocampus. We have examined the relationship between [Capre]t via presynaptic, voltage-dependent calcium channels (VDCCs), measured optically by using the fluorescent calcium indicator fura-2, and transmitter release, measured electrophysiologically. Activation of presynaptic NPY Y2 r...
متن کاملDirect G protein modulation of Cav2 calcium channels.
The regulation of presynaptic, voltage-gated calcium channels by activation of heptahelical G protein-coupled receptors exerts a crucial influence on presynaptic calcium entry and hence on neurotransmitter release. Receptor activation subjects presynaptic N- and P/Q-type calcium channels to a rapid, membrane-delimited inhibition-mediated by direct, voltage-dependent interactions between G prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 20 شماره
صفحات -
تاریخ انتشار 2000