Analysis of TTG1 and CPC-like MYB genes during Arabidopsis epidermal cell differentiation

نویسندگان

  • Rumi Tominaga-Wada
  • Takuji Wada
چکیده

The development of Arabidopsis thaliana epidermal cells includes the differentiation of trichomes and root hairs. The TRANSPARENT TESTA GLABRA 1 (TTG1) gene encodes a WD40 protein that induces trichome differentiation and reduces root hair formation in Arabidopsis. The CAPRICE (CPC) gene family includes CPC, ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), and CPC LIKE MYB3 (CPL3), which encode R3-type MYB transcription factors that inhibit trichome differentiation and promote root hair formation. CPC expression is positively regulated by a transcriptional complex that includes TTG1. To determine whether ETC1, ETC2, and CPL3 are also regulated by the TTG1 complex, we examined the functional relationship between TTG1 and CPC-like MYB genes. Double mutant analysis showed that the ttg1 mutant is epistatic to the cpc, etc1, etc2, and cpl3 mutants in trichome cell fate determination but not in root hair development. In roots, the cpc mutant is epistatic to the ttg1 mutant in root epidermal cell fate determination. Promoter-GUS analysis indicated that TTG1 is necessary for the expression of ETC1 and CPL3, but not for ETC2 expression. These results indicate that TTG1 had a stronger effect on trichome formation than CPC-like MYBs. By contrast, CPC had a stronger effect on root hair formation than TTG1. Our results suggest that ETC1 and CPL3 are also regulated by the TTG1 complex as is the case for CPC; however, ETC2 is not regulated by this complex. We concluded that ETC2 does not have a role in trichome and root hair formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor

In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homol...

متن کامل

Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation.

CAPRICE (CPC) encodes a small protein with an R3 MYB motif and promotes root hair cell differentiation in Arabidopsis thaliana. Three additional CPC-like MYB genes, TRY (TRIPTYCHON), ETC1 (ENHANCER OF TRY AND CPC 1) and ETC2 (ENHANCER OF TRY AND CPC 2) act in a redundant manner with CPC in trichome and root hair patterning. In this study, we identified an additional homolog, CPC-LIKE MYB 3 (CPL...

متن کامل

The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci.

A network of three classes of proteins consisting of bHLH and MYB transcription factors, and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), act in concert to activate trichome initiation and patterning. Using YFP-TTG1 translational fusions, we show that TTG1 is expressed ubiquitously in Arabidopsis leaves and is preferentially localized in the nuclei of trichomes at all developmental ...

متن کامل

Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) Control Tomato (Solanum lycopersicum) Anthocyanin Biosynthesis

In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato a...

متن کامل

Regulation of cell fate determination in plants

Building a multicellular organism, like a plant, from a single cell requires the coordinated formation of different cell types in a spatiotemporal arrangement. How different cell types arise in appropriate places and at appropriate times is one of the most intensively investigated questions in modern plant biology. Using models such as trichome formation, root hair formation, and stomatal devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016