Large Stokes Shift and High Efficiency Luminescent Solar Concentrator Incorporated with CuInS2/ZnS Quantum Dots
نویسندگان
چکیده
Luminescent solar concentrator (LSC) incorporated with quantum dots (QDs) have been widely regarded as one of the most important development trends of cost-effective solar energy. In this study, for the first time we report a new QDs-LSC integrated with heavy metal free CuInS2/ZnS core/shell QDs with large Stokes shift and high optical efficiency. The as-prepared CuInS2/ZnS QDs possess advantages of high photoluminescence quantum yield of 81% and large Stocks shift more than 150 nm. The optical efficiency of CuInS2/ZnS QDs-LSC reaches as high as 26.5%. Moreover, the power conversion efficiency of the QDs-LSC-PV device reaches more than 3 folds to that of pure PMMA-PV device. Furthermore, the PV device is able to harvest 4.91 folds solar energy with the assistance of this new CuInS2/ZnS QDs-LSC for the same size c-Si PV cell. The results demonstrate that this new CuInS2/ZnS QDs-LSC provides a promising way for the high efficiency, nonhazardous and low cost solar energy.
منابع مشابه
Biocompatible and highly luminescent near-infrared CuInS₂/ZnS quantum dots embedded silica beads for cancer cell imaging.
Bright and stable CuInS2/ZnS@SiO2 nanoparticles with near-infrared (NIR) emission were competently prepared by incorporating the as-prepared hydrophobic CuInS2/ZnS quantum dots (QDs) directly into lipophilic silane micelles and subsequently an exterior silica shell was formed. The obtained CuInS2/ZnS@SiO2 nanoparticles homogeneously comprised both single-core and multicore remarkable CuInS2/ZnS...
متن کاملHighly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots
Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photolum...
متن کاملFurther Improvement in Efficiency of ZnO Nanorod Based Solar Cells Using ZnS Quantum Dots as Light Harvester and Blocking Layer Material
Zinc oxide nanorod arrays (ZnO NRs) were grown on the ZnO seed layers via an aqueous solution using hydrothermal method and their photovoltaic properties were investigated. It was found that the growth period of 20 minutes is the optimum condition for ZnO nanorods growth, the cell containing these nanorods was considered as a reference cell. In order to further increase the cell performance, Zn...
متن کاملNanostructured, luminescent solar concentrators
Luminescent solar concentrators1 (LSCs), a class of solar-energyharvesting devices, operate slightly differently from traditional photovoltaic (PV) solar cells. Irrespective of the exact nature of the active materials used for their manufacturing, solar cells generate electrical carriers and, hence, a photocurrent. In contrast, LSCs absorb solar photons and re-emit them over a narrow band at lo...
متن کاملEnhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots.
Enhanced performance of polymer solar cells (PSCs) based on the blend of poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT):[6,6]-phenyl-C70-butyric acid methyl ester (PC71BM) is demonstrated by titanium dioxide (TiO2) interface modification via CuInS2/ZnS quantum dots (CZdots). Devices with a TiO2/CZdots composite buffer layer exhibit both a...
متن کامل