Electrical Pacing of Cardiac Tissue Including Potassium Inward Rectification
نویسندگان
چکیده
In this study cardiac tissue is stimulated electrically through a small unipolar electrode. Numerical simulations predict that around an electrode are adjacent regions of depolarization and hyperpolarization. Experiments have shown that during pacing of resting cardiac tissue the hyperpolarization is often inhibited. Our goal is to determine if the inward rectifying potassium current (IK1) causes the inhibition of hyperpolarization. Numerical simulations were carried out using the bidomain model with potassium dynamics specified to be inward rectifying. In the simulations, adjacent regions of depolarization and hyperpolarization were observed surrounding the electrode. For cathodal currents the virtual anode produces a hyperpolarization that decreases over time. For long duration pulses the current-voltage curve is non-linear, with very small hyperpolarization compared to depolarization. For short pulses, the hyperpolarization is more prominent. Without the inward potassium rectification, the current voltage curve is linear and the hyperpolarization is evident for both long and short pulses. In conclusion, the inward rectification of the potassium current explains the inhibition of hyperpolarization for long duration stimulus pulses, but not for short duration pulses.
منابع مشابه
Action of Potassi ~ and Narcotics on Rectification
The characteristics of the cell membrane seem to be of primary importance in the case of both conduction and contraction. Among the membrane qualities recently discovered is electrical rectification; ~z., the ability of the membrane to permit electrical current to pass more easily outward than inward (Cole and Curtis, 1941; Guttman and Cole, 1941). The present paper constitutes an at tempt to s...
متن کاملElectrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملMechanism of Rectification in Inward-rectifier K+ Channels
Inward rectifiers are a class of K+ channels that can conduct much larger inward currents at membrane voltages negative to the K+ equilibrium potential than outward currents at voltages positive to it, even when K+ concentrations on both sides of the membrane are made equal. This conduction property, called inward rectification, enables inward rectifiers to perform many important physiological ...
متن کاملInward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions.
The mechanism of rectification of the inwardly rectifying potassium channel was examined with single-channel recording techniques in isolated ventricular myocytes from adult guinea pig heart. Inward, or anomalous, rectification describes the property that potassium (K) current can enter the cell at potentials negative to the potassium equilibrium potential, EK, more readily than it can leave th...
متن کاملInward rectification in KATP channels: a pH switch in the pore.
Inward-rectifier potassium channels (Kir channels) stabilize the resting membrane potential and set a threshold for excitation in many types of cell. This function arises from voltage-dependent rectification of these channels due to blockage by intracellular polyamines. In all Kir channels studied to date, the voltage-dependence of rectification is either strong or weak. Here we show that in ca...
متن کامل