Adjoint Semilattice and Minimal Brouwerian Extensions of a Hilbert Algebra*

نویسنده

  • Jānis CĪRULIS
چکیده

Let A := (A,→, 1) be a Hilbert algebra. The monoid of all unary operations on A generated by operations αp : x → (p → x), which is actually an upper semilattice w.r.t. the pointwise ordering, is called the adjoint semilattice of A. This semilattice is isomorphic to the semilattice of finitely generated filters of A, it is subtractive (i.e., dually implicative), and its ideal lattice is isomorphic to the filter lattice of A. Moreover, the order dual of the adjoint semilattice is a minimal Brouwerian extension of A, and the embedding of A into this extension preserves all existing joins and certain “compatible” meets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Triplet Extensions I: Semibounded Operators in the Scale of Hilbert Spaces

The extension theory for semibounded symmetric operators is generalized by including operators acting in a triplet of Hilbert spaces. We concentrate our attention on the case where the minimal operator is essentially self-adjoint in the basic Hilbert space and construct a family of its self-adjoint extensions inside the triplet. All such extensions can be described by certain boundary condition...

متن کامل

Purely equivalential propositional formulas in the intermediate Godel-Dummett logic

. 1 Preliminaries Consider the variety Eω generated by the algebra ω := (N, ·), where i · j := max (i, j) for i 6= j, and i · j := 1 for i = j, i, j ∈ N1. These variety is a subvariety of the variety of equivalential algebras E . By an equivalential algebra we mean a grupoid A = (A,↔) that is a subreduct of a Brouwerian semilattice (or, equivalently, a Heyting algebra) with the operation ↔ give...

متن کامل

EQ-logics with delta connective

In this paper we continue development of formal theory of a special class offuzzy logics, called EQ-logics. Unlike fuzzy logics being extensions of theMTL-logic in which the basic connective is implication, the basic connective inEQ-logics is equivalence. Therefore, a new algebra of truth values calledEQ-algebra was developed. This is a lower semilattice with top element endowed with two binary...

متن کامل

A note on $lambda$-Aluthge transforms of operators

Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...

متن کامل

Join-semilattices with Two-dimensional Congruence Amalgamation

We say that a 〈∨, 0〉-semilattice S is conditionally co-Brouwerian, if (1) for all nonempty subsets X and Y of S such that X ≤ Y (i.e., x ≤ y for all 〈x, y〉 ∈ X × Y ), there exists z ∈ S such that X ≤ z ≤ Y , and (2) for every subset Z of S and all a, b ∈ S, if a ≤ b ∨ z for all z ∈ Z, then there exists c ∈ S such that a ≤ b ∨ c and c ≤ Z. By restricting this definition to subsets X , Y , and Z ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012