Drying of films formed by ordered poly(ethylene oxide)-poly(propylene oxide) block copolymer gels.
نویسندگان
چکیده
The drying of hydrogel films formed by poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers (Pluronic P105 and Pluronic L64) is investigated at various air relative humidity (RH) conditions in the range 11-94%. These amphiphilic block copolymers self-assemble to form a variety of ordered (lyotropic liquid crystalline) structures as the water content decreases. The amount of water lost increases linearly with the drying time initially (constant rate region, stage I). After this linear region, a falling rate is observed (stage II). The drying rate increases with decreasing RH, thus greatly shortening the drying time. A decrease of the initial film thickness or a decrease in the initial water content shortens the drying time; however, the drying mechanism remains the same. Analysis of the experimental data shows that the hydration level in the Pluronic hydrogel mainly determines the drying rate, rather than the type of ordered structure formed. Two distinct regions (liquid/gel and solid/crystalline) are observed in the drying isotherm for PEO-PPO block copolymers and homopolymer poly(ethylene glycol)s. A model for one-dimensional water diffusion is used to fit the experimental drying results at different RH, initial film thickness, and initial water content conditions. The model accounts for the shrinkage of the film during drying and for a water diffusion coefficient that is a function of the water concentration in the film. For the experimental conditions considered here, the Biot number (Bi) is less than unity and the drying is mainly limited by evaporation at the film surface. The diffusion model is used to obtain information for cases where Bi > 1.
منابع مشابه
Sorption and Transport of Water Vapor in Amphiphilic Block Copolymer Films
Water vapor sorption in films consisting of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) amphiphilic block copolymers has been measured gravimetrically at air relative humidity in the range 38–94% at 248C. The water sorption isotherm was obtained and compared to data for water vapor desorption (drying) for the same system. The kinetics of water vapor sorption we...
متن کاملBlock copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: segment effect on gold ion reduction, stabilization, and particle morphology.
We report here on the segment effects of poly(ethylene oxide)-containing block copolymers (PEO-BCP) on the reduction activity for tetrachloride gold(III) ([AuCl(4)](-)), interfacial activity for gold surface, colloidal stability, and morphology of gold nanoparticles formed in aqueous solutions. In particular, the effects of poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), polyethylene (...
متن کاملSelf-assembled supramolecular gels of reverse poloxamers and cyclodextrins.
A series of supramolecular aggregates were prepared using a poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) (PPO-PEO-PPO) block copolymer and β- or α-cyclodextrins (CD). The combination of β-CD and the copolymer yields inclusion complexes (IC) with polypseudorotaxane structures. These are formed by complexation of the PPO blocks with β-CD molecules producing a powder precipitat...
متن کامل“Pore-Like” Effects of Super-Molecular Self-Assembly on Molecular Diffusion of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) in Water
Molecular diffusion of triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in water was studied with the help of Pulsed Field Gradient NMR in the broad range of polymer weight fractions from 0.09 to 0.8. Owing to amphiphilic nature of the molecules, these block copolymers exhibit rich self-organization properties when mixed with water. In particular, at ambient t...
متن کاملPoly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)-g-poly(vinyl pyrrolidone): synthesis and characterization.
Pluronic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers are grafted with poly(vinyl pyrrolidone) by free radical polymerization of vinyl pyrrolidone with simultaneous chain transfer to the Pluronic in dioxane. This modified polymer has both thermal responsiveness and remarkable capacity to interact with a wide variety of hydrophilic and hydrop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2005