IR thermography-based monitoring of respiration phase without image segmentation
نویسندگان
چکیده
BACKGROUND Respiratory rate is an essential parameter in biomedical research and clinical applications. Most respiration measurement techniques in preclinical animal models require surgical implantation of sensors. Current clinical measurement modalities typically involve attachment of sensors to the patient, causing discomfort. We have previously developed a non-contact approach to measuring respiration phase in head-restrained rodents using infrared (IR) thermography. While the non-invasive nature of IR thermography offers many advantages, it also bears the complexity of extracting respiration signals from videos. Previously reported algorithms involve image segmentation to identify the nose in IR videos and extract breathing-relevant pixels which is particularly challenging if the videos have low contrast or suffer from suboptimal focusing. NEW METHOD To address this challenge, we developed a novel algorithm, which extracts respiration signals based on pixel time series, removing the need for nose-tracking and image segmentation. RESULTS & COMPARISON WITH EXISTING METHODS We validated the algorithm by performing respiration measurements in head-restrained mice and in humans with IR thermography in parallel with established standard techniques. We find the algorithm reliably detects inhalation onsets with high temporal precision. CONCLUSIONS The new algorithm facilitates the application of IR thermography for measuring respiration in biomedical research and in clinical settings.
منابع مشابه
FPGA-based of Thermogram Enhancement Algorithm for Non-destructive Thermal Characterization
متن کامل
Neonatal non-contact respiratory monitoring based on real-time infrared thermography
BACKGROUND Monitoring of vital parameters is an important topic in neonatal daily care. Progress in computational intelligence and medical sensors has facilitated the development of smart bedside monitors that can integrate multiple parameters into a single monitoring system. This paper describes non-contact monitoring of neonatal vital signals based on infrared thermography as a new biomedical...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملSalt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Neuroscience Methods
دوره 301 شماره
صفحات -
تاریخ انتشار 2018