The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti
نویسندگان
چکیده
Quorum sensing is a cell density-dependent communication system of bacteria relying on autoinducer molecules. During the analysis of the post-transcriptional regulation of quorum sensing in the nitrogen fixing plant symbiont Sinorhizobium meliloti, we predicted and verified a direct interaction between the 5'-UTR of sinI mRNA encoding the autoinducer synthase and a small RNA (sRNA), which we named RcsR1. In vitro, RcsR1 prevented cleavage in the 5'-UTR of sinI by RNase E and impaired sinI translation. In line with low ribosomal occupancy and transcript destabilization upon binding of RcsR1 to sinI, overproduction of RcsR1 in S. meliloti resulted in lower level and shorter half-life of sinI mRNA, and in decreased autoinducer amount. Although RcsR1 can influence quorum sensing via sinI, its level did not vary at different cell densities, but decreased under salt stress and increased at low temperature. We found that RcsR1 and its stress-related expression pattern, but not the interaction with sinI homologs, are conserved in Sinorhizobium, Rhizobium and Agrobacterium. Consistently, overproduction of RcsR1 in S. meliloti and Agrobacterium tumefaciens inhibited growth at high salinity. We identified conserved targets of RcsR1 and showed that most conserved interactions and the effect on growth under salt stress are mediated by the first stem-loop of RcsR1, while its central part is responsible for the species-specific interaction with sinI. We conclude that RcsR1 is an ancient, stress-related riboregulator in rhizobia and propose that it links stress responses to quorum sensing in S. meliloti.
منابع مشابه
An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation.
The Sin/ExpR quorum-sensing system of Sinorhizobium meliloti plays an important role in the symbiotic association with its host plant, Medicago sativa. The LuxR-type response regulators of the Sin system include the synthase (SinI)-associated SinR and the orphan regulator ExpR. Interestingly, the S. meliloti Rm1021 genome codes for four additional putative orphan LuxR homologs whose regulatory ...
متن کاملA Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression
Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1...
متن کاملRole of quorum sensing in Sinorhizobium meliloti-Alfalfa symbiosis.
The ExpR/Sin quorum-sensing system of the gram-negative soil bacterium Sinorhizobium meliloti plays an important role in the establishment of symbiosis with its host plant Medicago sativa. A mutant unable to produce autoinducer signal molecules (sinI) is deficient in its ability to invade the host, but paradoxically, a strain lacking the quorum-sensing transcriptional regulator ExpR is as effic...
متن کاملSinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria.
Many bacterial species respond to the quorum-sensing signal autoinducer-2 (AI-2) by regulating different niche-specific genes. Here, we show that Sinorhizobium meliloti, a plant symbiont lacking the gene for the AI-2 synthase, while not capable of producing AI-2 can nonetheless respond to AI-2 produced by other species. We demonstrate that S. meliloti has a periplasmic binding protein that bind...
متن کاملمقایسه کارآیی چند ماده حامل باکتری Sinorhizobium meliloti برای تولید مایه تلقیح یونجه
Peat is the best known and the most widely used rhizobial carrier, but unfortunately, it lacks of sufficient sources in Iran. This research aimed at using some inexpensive materials as carrier instead of peat for producing the rhizobial inoculant for alfalfa. For this purpose, the physical and chemical properties of some materials to be used as carriers were determined and the viability of Sino...
متن کامل