DNA-nanoparticle micelles as supramolecular fluorogenic substrates enabling catalytic signal amplification and detection by DNAzyme probes.

نویسندگان

  • Miao-Ping Chien
  • Matthew P Thompson
  • Nathan C Gianneschi
چکیده

Catalytic DNA molecules have tremendous potential in propagating detection events via nucleic acid sequence selective signal amplification. However, they suffer from product inhibition limiting their widespread utility. Herein, this limitation is overcome utilizing a novel fluorogenic substrate design consisting of cooperatively assembled DNA-nanoparticle micelles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification.

In this work, a simple and novel quartz crystal microbalance (QCM) assay is demonstrated to selectively and sensitively detect the adenosine triphosphate (ATP). The amplification process consists of circular nucleic acid strand-displacement polymerization, aptamer recognition strategy and nanoparticle signal amplification. With the involvement of an aptamer-based complex, two amplification reac...

متن کامل

A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures† †Electronic supplementary information (ESI) available: Oligonucleotide sequences, DLS and zeta potential measurements, TEM images, absorption and fluorescence spectra, cytotoxicity assay and CLSM images. See DOI: 10.1039/c6sc04633a Click here for additional data file.

Efficient strategies for the ultrasensitive imaging of gene expression in living cells are essential in chemistry and cell biology. Here, we report a novel and efficient enzyme-free dual signal amplification strategy for live cell mRNA imaging by using a smart nucleic acid hairpin-based nanosystem. This nanosystem consists of a ZnO nanoparticle core, an interlayer of polydopamine and an outer l...

متن کامل

Programmable Mg(2+)-dependent DNAzyme switch by the catalytic hairpin DNA assembly for dual-signal amplification toward homogeneous analysis of protein and DNA.

The catalytic hairpin DNA assembly-programmed active Mg(2+)-dependent DNAzyme was proposed for dual-signal amplified detection toward protein and DNA. The protein detection was implemented with the further combination of an additional terminal protection strategy. The detection limit toward avidin and target DNA could be achieved as 2 pM and 0.5 pM, respectively, with a high selectivity.

متن کامل

A SERS DNAzyme biosensor for lead ion detection.

SERS biosensor for sensitive and selective detection of lead ions (Pb(2+)) based on DNAzyme was developed by taking advantage of the specific catalytic reaction of DNAzyme upon binding to Pb(2+) ions. Detection was accomplished by SERS nanoprobe labeled with DNA and Raman reporters for signal amplification.

متن کامل

A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures.

Efficient strategies for the ultrasensitive imaging of gene expression in living cells are essential in chemistry and cell biology. Here, we report a novel and efficient enzyme-free dual signal amplification strategy for live cell mRNA imaging by using a smart nucleic acid hairpin-based nanosystem. This nanosystem consists of a ZnO nanoparticle core, an interlayer of polydopamine and an outer l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 47 1  شماره 

صفحات  -

تاریخ انتشار 2011