Generic G&eaux- Differentiability of Convex Functions on Small Sets
نویسنده
چکیده
The theory of generic differentiability of convex functions on Banach spaces is by now a well-explored part of infinite-dimensional geometry. All the attempts to solve this kind of problem have in common, as a working hypothesis, one special feature of the finite-dimensional case. Namely, convex functions are always considered to be defined on convex sets with nonempty interior. But typically, a convex set in a Banach space does not have interior points even when it is not contained in a closed hyperplane. So this raises the problem of expounding a theory of differentiability of convex functions defined on small sets, i.e., sets without interior points. In our paper [N2] we have made an attempt to solve this problem, discussing questions of generic Frechet-differentiability of convex functions on small sets. In the present paper we deal with problems of generic Gateauxdifferentiability in this context.
منابع مشابه
$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملConvexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملOn Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کامل