Regularization by Truncated Total Least Squares
نویسندگان
چکیده
The total least squares (TLS) method is a successful method for noise reduction in linear least squares problems in a number of applications. The TLS method is suited to problems in which both the coefficient matrix and the right-hand side are not precisely known. This paper focuses on the use of TLS for solving problems with very ill-conditioned coefficient matrices whose singular values decay gradually (so-called discrete ill-posed problems), where some regularization is necessary to stabilize the computed solution. We filter the solution by truncating the small singular values of the TLS matrix. We express our results in terms of the singular value decomposition (SVD) of the coefficient matrix rather than the augmented matrix. This leads to insight into the filtering properties of the truncated TLS method as compared to regularized least squares solutions. In addition, we propose and test an iterative algorithm based on Lanczos bidiagonalization for computing truncated TLS solutions.
منابع مشابه
Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملLevel choice in truncated total least squares
The method of truncated total least squares [2] is an alternative to the classical truncated singular value decomposition used for the regularization of ill-conditioned linear systems Ax ≈ b [3]. Truncation methods aim at limiting the contribution of noise or rounding errors by cutting off a certain number of terms in an expansion such as the singular value decomposition. To this end a truncati...
متن کاملA comparison of truncated total least squares with Tikhonov regularization in imaging by ultrasound inverse scattering.
For good image quality using ultrasound inverse scattering, one alternately solves the well-posed forward scattering equation for an estimated total field and the ill-posed inverse scattering equation for the desired object property function. In estimating the total field, error or noise contaminates the coefficients of both matrix and data of the inverse scattering equation. Previous work on i...
متن کاملTruncated Total Least Squares Method with a Practical Truncation Parameter Choice Scheme for Bioluminescence Tomography Inverse Problem
In bioluminescence tomography (BLT), reconstruction of internal bioluminescent source distribution from the surface optical signals is an ill-posed inverse problem. In real BLT experiment, apart from the measurement noise, the system errors caused by geometry mismatch, numerical discretization, and optical modeling approximations are also inevitable, which may lead to large errors in the recons...
متن کاملHigh-Resolution Cortical Dipole Imaging Using Spatial Inverse Filter Based on Filtering Property
Cortical dipole imaging has been developed to visualize brain electrical activity in high spatial resolution. It is necessary to solve an inverse problem to estimate the cortical dipole distribution from the scalp potentials. In the present study, the accuracy of cortical dipole imaging was improved by focusing on filtering property of the spatial inverse filter. We proposed an inverse filter t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 18 شماره
صفحات -
تاریخ انتشار 1997