High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs

نویسندگان

  • Abdellah Chkifa
  • Albert Cohen
  • Christoph Schwab
چکیده

We consider the problem of Lagrange polynomial interpolation in high or countably infinite dimension, motivated by the fast computation of solution to parametric/stochastic PDE’s. In such applications there is a substantial advantage in considering polynomial spaces that are sparse and anisotropic with respect to the different parametric variables. In an adaptive context, the polynomial space is enriched at different stages of the computation. In this paper, we study an interpolation technique in which the sample set is incremented as the polynomial dimension increases, leading therefore to a minimal amount of PDE solving. This construction is based on standard principle of tensorization of a one dimensional interpolation scheme and sparsification. We derive bounds on the Lebesgue constants for this interpolation process in terms of their univariate counterpart. For a class of model elliptic parametric PDE’s, we have shown in [11] that certain polynomial approximations based on Taylor expansions converge in terms the polynomial dimension with an algebraic rate that is robust with respect to the parametric dimension. We show that this rate is preserved when using our interpolation algorithm. We also propose a greedy algorithm for the adaptive selection of the polynomial spaces based on our interpolation scheme, and illustrate its performance both on scalar valued functions and on parametric elliptic PDE’s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, we show analyticity of the solution with respect to the parameters and give an a priori error analysis for N-term generalized polynomial chaos approximations in a scale of Bochner spaces. The problem is reduced to a parametric family of deterministic initial boundary value problems o...

متن کامل

Numerical Comparison of Leja and Clenshaw-Curtis Dimension-Adaptive Collocation for Stochastic Parametric Electromagnetic Field Problems

We consider the problem of approximating the output of a parametric electromagnetic field model in the presence of a large number of uncertain input parameters. Given a sufficiently smooth output with respect to the input parameters, such problems are often tackled with interpolation-based approaches, such as the stochastic collocation method on tensor-product or isotropic sparse grids. Due to ...

متن کامل

A Dynamically Adaptive Sparse Grid Method for Quasi-Optimal Interpolation of Multidimensional Analytic Functions

In this work we develop a dynamically adaptive sparse grids (SG) method for quasi-optimal interpolation of multidimensional analytic functions defined over a product of one dimensional bounded domains. The goal of such approach is to construct an interpolant in space that corresponds to the “best M -terms” based on sharp a priori estimate of polynomial coefficients. In the past, SG methods have...

متن کامل

Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks

Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with hi...

متن کامل

On sparse interpolation and the design of deterministic interpolation points

In this paper, we build up a framework for sparse interpolation. We first investigate the theoretical limit of the number of unisolvent points for sparse interpolation under a general setting and try to answer some basic questions of this topic. We also explore the relation between classical interpolation and sparse interpolation. We second consider the design of the interpolation points for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014