XPX: Generalized Tweakable Even-Mansour with Improved Security Guarantees

نویسنده

  • Bart Mennink
چکیده

We present XPX, a tweakable blockcipher based on a single permutation P . On input of a tweak (t11, t12, t21, t22) ∈ T and a message m, it outputs ciphertext c = P (m⊕∆1)⊕∆2, where ∆1 = t11k⊕t12P (k) and ∆2 = t21k⊕t22P (k). Here, the tweak space T is required to satisfy a certain set of trivial conditions (such as (0, 0, 0, 0) 6∈ T ). We prove that XPX with any such tweak space is a strong tweakable pseudorandom permutation. Next, we consider the security of XPX under related-key attacks, where the adversary can freely select a key-deriving function upon every evaluation. We prove that XPX achieves various levels of related-key security, depending on the set of key-deriving functions and the properties of T . For instance, if t12, t22 6= 0 and (t21, t22) 6= (0, 1) for all tweaks, XPX is XOR-related-key secure. XPX generalizes Even-Mansour (EM), but also Rogaway’s XEX based on EM, and tweakable EM used in Minalpher. As such, XPX finds a wide range of applications. We show how our results on XPX directly imply related-key security of the authenticated encryption schemes Prøst-COPA and Minalpher, and how a straightforward adjustment to the MAC function Chaskey and to keyed Sponges makes them provably related-key secure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Provable Security of the Tweakable Even-Mansour Cipher Against Multi-Key and Related-Key Attacks

Cogliati et al. introduced the tweakable Even-Mansour cipher constructed from a single permutation and an almost-XORuniversal (AXU) family of hash functions with tweak and key schedule. Most of previous papers considered the security of the (iterated) tweakable Even-Mansour cipher in the single-key setting. In this paper, we focus on the security of the tweakable Even-Mansour cipher in the mult...

متن کامل

Connecting tweakable and multi-key blockcipher security

The significance of understanding blockcipher security in the multi-key setting is highlighted by the extensive literature on attacks, and how effective key size can be significantly reduced. Nevertheless, little attention has been paid in formally understanding the design of multi-key secure blockciphers. In this work, we formalize the multi-key security of tweakable blockciphers in case of ge...

متن کامل

Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers with Linear Tweak and Key Mixing

The iterated Even-Mansour construction defines a block cipher from a tuple of public n-bit permutations (P1, . . . , Pr) by alternatively xoring some n-bit round key ki, i = 0, . . . , r, and applying permutation Pi to the state. The tweakable Even-Mansour construction generalizes the conventional Even-Mansour construction by replacing the n-bit round keys by n-bit strings derived from a master...

متن کامل

Multi-key Analysis of Tweakable Even-Mansour

The tweakable Even-Mansour construction generalizes the conventional Even-Mansour scheme through replacing round keys by strings derived from a master key and a tweak. Besides providing plenty of inherent variability, such a design builds a tweakable block cipher from some lower level primitive. In the present paper, we evaluate the multi-key security of TEM-1, one of the most commonly used one...

متن کامل

Tweaking Even-Mansour Ciphers

We study how to construct efficient tweakable block ciphers in the Random Permutation model, where all parties have access to public random permutation oracles. We propose a construction that combines, more efficiently than by mere black-box composition, the CLRW construction (which turns a traditional block cipher into a tweakable block cipher) of Landecker et al. (CRYPTO 2012) and the iterate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015