The one-dimensional chemotaxis model: global existence and asymptotic profile

نویسندگان

  • Thomas Hillen
  • Alex Potapov
چکیده

Osaki and Yagi (2001) give a proof of global existence for the classical chemotaxis model in one space dimension with use of energy estimates. Here we present an alternative proof which uses the regularity properties of the heat-equation semigroup. With this method we can identify a large selection of admissible spaces, such that the chemotaxis model de nes a global semigroup on these spaces. We use scaling arguments to derive the asymptotic pro le of the solutions and we show numerical simulations. Copyright ? 2004 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay estimates of solutions to the IBq equation

‎In this paper we focus on the Cauchy problem for the generalized‎ ‎IBq equation with damped term in $n$-dimensional space‎. ‎We establish the global existence and decay estimates of solution with $L^q(1leq qleq 2)$ initial value‎, ‎provided that the initial value is suitably small‎. ‎Moreover‎, ‎we also show that the solution is asymptotic to the solution $u_L$ to the corresponding linear equa...

متن کامل

Global weak solutions and asymptotic limits of a Cahn--Hilliard--Darcy system modelling tumour growth

We study the existence of weak solutions to a Cahn–Hilliard–Darcy system coupled with a convection-reaction-diffusion equation through the fluxes, through the source terms and in Darcy’s law. The system of equations arises from a mixture model for tumour growth accounting for transport mechanisms such as chemotaxis and active transport. We prove, via a Galerkin approximation, the existence of g...

متن کامل

The Stability and Dynamics of a Spike in the One-Dimensional Keller-Segel model

In the limit of a large mass M À 1, and on a finite interval of length 2L, an equilibrium spike solution to the classical Keller-Segel chemotaxis model with a linear chemotactic function is constructed asymptotically. By calculating an asymptotic formula for the translational eigenvalue for M À 1, it is shown that the equilibrium spike solution is unstable to translations of the spike profile. ...

متن کامل

Global bifurcation and stability of steady states for a reaction-diffusion-chemotaxis model with volume-filling effect

This paper is devoted to studying a reaction-diffusion-chemotaxis model with a volume-filling effect in a bounded domain with Neumann boundary conditions. We first establish the global existence of classical solutions bounded uniformly in time. Then applying the asymptotic analysis and bifurcation theory, we obtain both the local and global structure of steady states bifurcating from the homoge...

متن کامل

Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension.

We establish the existence of global classical solutions and non-trivial steady states of a one-dimensional attraction-repulsion chemotaxis model subject to the Neumann boundary conditions. The results are derived based on the method of energy estimates and the phase plane analysis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004