SAR interferometry: Tropospheric corrections from GPS observations
نویسندگان
چکیده
Interferometric Synthetic Aperture Radar (InSAR) techniques have been recognised as an ideal tool for many ground deformation monitoring applications. However, the spatially and temporally variable delay of the radar signal propagating through the atmosphere is a major limitation to accuracy. The dominant factor to be considered is the tropospheric heterogeneity, which can lead to misinterpretation of InSAR results. In this paper a between-site and between-epoch double-differencing algorithm for the generation of tropospheric corrections to InSAR results based on GPS observations is proposed. In order to correct the radar results on a pixel-by-pixel basis, the GPS-derived corrections have to be interpolated. Using experimental data it has been found that the inverse distance weighted and kriging interpolation methods are more suitable than the spline interpolation method. Differential corrections as large as several centimetres may have to be applied in order to ensure subcentimetre accuracy for the InSAR result. The algorithm and procedures described in this paper could easily be implemented in a continuous GPS network data centre. The interpolated image of between-site, singledifferenced tropospheric delays can be derived as a routine product to assist radar interferometry.
منابع مشابه
GPS Derived Tropospheric Delay Corrections to Radar Interferometry
Synthetic Aperture Radar Interferometry (InSAR) has been recognised as a well-suited tool for topographic mapping and ground deformation monitoring applications. However, the spatially and temporally variable tropospheric delay represents a major limitation to InSAR applications. On the other hand, it has become feasible to derive tropospheric corrections from continuous GPS for InSAR due to th...
متن کاملTropospheric delay estimation and analysis using GPS and SAR interferometry
Spatially localized refractivity variations, mainly due to water vapor, are a major source of error in high-precision positioning techniques such as GPS and SAR interferometry. Refractivity induced delay variations can be misinterpreted as, e.g., crustal deformation signals or positioning biases. In this study, signal delay estimates based on SAR observations and simultaneous GPS time series ar...
متن کاملCross-validation of Tropospheric Delay Variability Observed by Gps and Sar Interferometry
Spatially localized refractivity variations, mainly due to water vapor, are a major source of error in high-precision positioning techniques such as GPS and SAR interferometry. Refractivity induced delay variations can be misinterpreted as, e.g., crustal deformation signal or positioning biases. In this study, signal delay estimates based on SAR observations and simultaneous GPS time series are...
متن کاملA Double Differencing Algorithm for GPS-derived Tropospheric Delay Corrections to Differential Radar Interferometry
Tropospheric heterogeneity can lead to misinterpretation of differential radar interferometric results. A betweensite and between-epoch double-differencing algorithm for the derivation of tropospheric corrections to radar results using GPS measurements is proposed. In order to correct the radar result on a pixel-by-pixel basis, the GPS-derived corrections have to be interpolated. Using the GPS ...
متن کاملInvestigation of MODIS mission capability in tropospheric delay estimation for precise point positioning
Tropospheric delay is always considered as one of the factors limiting the accuracy of GPS. In this paper, the three-dimensional ray tracing technique is proposed to calculate the tropospheric delay. The ability of the MODIS mission to calculate the tropospheric delay is also examined. For this purpose, an area in central Europe was selected and a MODIS acquisition on 2008/08/01 was studied. In...
متن کامل