Existence and Boundary Stabilization of the Semilinear Mindlin-Timoshenko System

نویسندگان

  • F. D. Araruna
  • J. E. S. Borges
چکیده

We consider dynamics of the one-dimensional Mindlin-Timoshenko model for beams with a nonlinear external forces and a boundary damping mechanism. We investigate existence and uniqueness of strong and weak solution. We also study the boundary stabilization of the solution, i.e., we prove that the energy of every solution decays exponentially as t → ∞. AMS Subject Classifications. 35L70, 35B40, 74K10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Well-posedness and stability of a semilinear Mindlin-Timoshenko plate model

"Well-posedness and stability of a semilinear Mindlin-Timoshenko plate model" I will discuss well-posedness and long-time behavior of Mindlin-Timoshenko plate equations that describe vibrations of thin plates. This system of partial differential equations was derived by R. Mindlin in 1951 (though E. Reissner also considered an analogous model earlier in 1945). It can be regarded as a generaliza...

متن کامل

Asymptotic limits and stabilization for the 1D nonlinear Mindlin-Timoshenko system

This paper shows how the so called von Kármán model can be obtained as a singular limit of a modified Mindlin-Timoshenko system when the modulus of elasticity in shear k tends to infinity, provided a regularizing term through a fourth order dispersive operator is added. Introducing damping mechanisms, the authors also show that the energy of solutions for this modified Mindlin-Timoshenko system...

متن کامل

Controllability of the Kirchhoff System for Beams as Limit of the Mindlin-timoshenko One

We consider the dynamical one-dimensional Mindlin-Timoshenko system for beams. We analyze how its controllability properties depend on the modulus of elasticity in shear k. In particular we prove that the exact boundary controllability property of the Kirchhoff system may be obtained as singular limit, as k → ∞, of the partial controllability of a sharp subspace of low frequency components of t...

متن کامل

Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method

A study of the free vibration of Timoshenko beams and axisymmetric Mindlin plates is presented. The analysis is based on the Chebyshev pseudospectral method, which has been widely used in the solution of fluid mechanics problems. Clamped, simply supported, free and sliding boundary conditions of Timoshenko beams are treated, and numerical results are presented for different thickness-to-length ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008