Bovine prolactin-related protein-I is anchored to the extracellular matrix through interactions with type IV collagen.
نویسندگان
چکیده
The bovine placenta produces an array of proteins structurally similar to pituitary prolactin (PRL). At least ten genes of the bovine placental PRL family, including bovine placental lactogen (bPL) and ten bovine PRL-related protein-I to -X (bPRP-I to -X), encode hormones/cytokines predicted to be involved in the establishment and maintenance of pregnancy. Targets and biological roles for most members of the bovine PRL family have yet to be specified. This study focused on three members of bovine PRL family, bPL, bPRP-I, and bPRP-VI. An alkaline phosphatase (AP) tagging strategy was used to monitor interactions of the ligands with their targets. AP-bPRP-I and AP-bPRP-VI specifically bound to tissue sections of the bovine placentome. AP-bPRP-I and AP-bPRP-VI binding within the placentome mimicked the distribution of the extracellular matrix (ECM). Consequently, AP fusion protein binding to individual ECM components (heparin, laminin, fibronectin, type I collagen, and type IV collagen) was evaluated. AP-bPRP-I specifically bound to type IV collagen, but not to the other ECM components. AP-bPRP-VI exhibited weak interactions with ECM components, while AP-bPL and AP did not show significant binding to any of the ECM components. Binding of AP-bPRP-I to type IV collagen was concentration-dependent, influenced by salt concentrations, and specific to the N-terminal cross-linking domain (7S) of type IV collagen but not its triple-helical domain. The interaction of bPRP-I with type IV collagen suggests that bPRP-I accumulates in the ECM where it likely acts on cells traversing the bovine placentome.
منابع مشابه
Immobilization of the Alkaline Phosphatase on Collagen Surface via Cross-Linking Method
Background: Collagen, the most abundant protein in the human body, and as an extracellular matrix protein, has an important role in the fiber formation. This feature of the collagen renders establishment of the structural skeleton in tissues. Regarding specific features associated with the collagen, such as, formation of the porous structure, permeability and hydrophilicity, it can also be use...
متن کاملStudy of Basement Membrane Type IV Collagen Appearance in the Brain Choroids Plexus of Mouse Fetuses
Introduction & Objective: The brain choroids plexus (BCP) plays an important role in the cerebrospinal fluid (CSF) production, but its characterization is still incomplete. Collagen type IV, is one of the most important proteins of basement membrane (BM) and extracellular matrix (ECM) of BCP. In the present study we investigated the differential period of type IV collagen in basement membrane...
متن کاملI-28: Role of Mevalonate-Ras Homology (Rho)/Rho-Associated Coiled-Coil-Forming Protein Ki nase-Mediated Signaling Pathway in The Pathogenesis of Endometriosis-Associated Fibrosis
Background: Endometriosis, a disease affecting 3-10% of women of reproductive age, is characterized by the ectopic growth of endometrial glands and stroma surrounded by dense fibrous tissue. Whereas, normal eutopic endometrium shows scarless tissue repair during menstrual cycles, which suggests that the endometriotic tissues have distinct mechanisms of fibrogenesis. During the development of en...
متن کاملتهیه پودر ماتریکس خارج سلولی از بافت چربی جهت مهندسی بافت
Background: With the aim of regenerating healthy tissues, different tissue engineering strategies pointed to extracellular matrix (ECM)-based scaffolds in tissue engineering and regenerative medicine and wound healing. It is a multidisciplinary science works to create biocompatible scaffolds with perfect physical parameters, mechanical integrity and high porosity to promote cell growth, migrati...
متن کاملMolecular architecture of basement membranes.
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of endocrinology
دوره 196 2 شماره
صفحات -
تاریخ انتشار 2008