Single Enzyme Experiments Reveal a Long-Lifetime Proton Leak State in a Heme-Copper Oxidase
نویسندگان
چکیده
Heme-copper oxidases (HCOs) are key enzymes in prokaryotes and eukaryotes for energy production during aerobic respiration. They catalyze the reduction of the terminal electron acceptor, oxygen, and utilize the Gibbs free energy to transport protons across a membrane to generate a proton (ΔpH) and electrochemical gradient termed proton motive force (PMF), which provides the driving force for the adenosine triphosphate (ATP) synthesis. Excessive PMF is known to limit the turnover of HCOs, but the molecular mechanism of this regulatory feedback remains relatively unexplored. Here we present a single-enzyme study that reveals that cytochrome bo3 from Escherichia coli, an HCO closely homologous to Complex IV in human mitochondria, can enter a rare, long-lifetime leak state during which proton flow is reversed. The probability of entering the leak state is increased at higher ΔpH. By rapidly dissipating the PMF, we propose that this leak state may enable cytochrome bo3, and possibly other HCOs, to maintain a suitable ΔpH under extreme redox conditions.
منابع مشابه
Proton exit from the heme-copper oxidase of Escherichia coli.
Pathways of proton entry have been identified in the proton-translocating heme-copper oxidases, but the proton exit pathway is unknown. Here we report experiments with cytochrome bo3 in Escherichia coli cells that may identify the beginning of the exit pathway. Systematic mutations of arginines 438 and 439 (R481 and R482 in the E. coli enzyme), numbering as in cytochrome aa3 from bovine heart m...
متن کاملProbing the Q-proton pathway of ba3-cytochrome c oxidase by time-resolved Fourier transform infrared spectroscopy.
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the...
متن کاملHigh Resolution Structure of the ba3 Cytochrome c Oxidase from Thermus thermophilus in a Lipidic Environment
The fundamental chemistry underpinning aerobic life on Earth involves reduction of dioxygen to water with concomitant proton translocation. This process is catalyzed by members of the heme-copper oxidase (HCO) superfamily. Despite the availability of crystal structures for all types of HCO, the mode of action for this enzyme is not understood at the atomic level, namely how vectorial H(+) and e...
متن کاملThe roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer.
The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cyt...
متن کاملDirect measurement of proton release by cytochrome c oxidase in solution during the F-->O transition.
The mechanism by which electron transfer is coupled to proton pumping in cytochrome c oxidase is a major unsolved problem in molecular bioenergetics. In this work it is shown that, at least under some conditions, proton release from the enzyme occurs before proton uptake upon electron transfer to the heme/Cu active site of the enzyme. This sequence is similar to that of proton release and uptak...
متن کامل