Solution of polarised singlet DGLAP evolution equations by the method of characteristics

نویسندگان

  • D. K. Choudhury
  • P. K. Sahariah
چکیده

The polarised singlet coupled DGLAP equations (LO) are transformed by a Taylor series expansion at low x into a pair of partial differential equations in x and t(t = lnQ2/Λ2). The pair of coupled partial differential equations is then reduced to canonical form and the resultant system solved by applying the method of characteristics under small x and t approximations. The result is compared with some exact solutions available in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic and semi-analytic solution of the coupled DGLAP equations at small x by the method of characteristics

Coupled DGLAP equations involving singlet quark and gluon distributions are explored by a Taylor expansion at small x as two first order partial differential equations in two variables : Bjorken x and t (t = log 2 Λ ).The system of equations are then reduced to canonical form and the resultant equations are solved by the method of characteristics.Analytic and semi-analytic solutions thus obtain...

متن کامل

Precision studies of the NNLO DGLAP evolution at the LHC with Candia

We summarize the theoretical approach to the solution of the NNLO DGLAP equations using methods based on the logarithmic expansions in x-space and their implementation into the C program Candia 1.01. We present the various options implemented in the program and discuss the different solutions. The user can choose the order of the evolution, the type of the solution, which can be either exact or...

متن کامل

حل معادله تحولی DGLAP برای فرایند ترکش گلوئون در LO و NLO

In this work, we calculate DGLAP evolution equation at LO and NLO by Laplace method for fragmentation function of gluon to meson or baryon. To prove the validity of this method, we evolve the fragmentation functions of  andby using this method. In this method, it is not necessary to calculate these functions in Laplace space. This method is just used for simplifing the equations

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Numerical Solution of The First-Order Evolution Equations by Radial Basis Function

‎In this work‎, ‎we consider the nonlinear first-order evolution‎ ‎equations‎: ‎$u_t=f(x,t,u,u_x,u_{xx})$ for $0 ‎to initial condition $u(x,0)=g(x)$‎, ‎where $u$ is a function of‎ ‎$x$ and $t$ and $f$ is a known analytic function‎. ‎The purpose of‎ ‎this paper is to introduce the method of RBF to existing method‎ ‎in solving nonlinear first-ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006