Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure
نویسندگان
چکیده
[1] The efficiency of heat transfer by conduction in the Earth’s core controls the dynamics of convection and limits the power available for the geodynamo. We have measured the room temperature electrical resistivity of iron and iron-silicon alloy to 60GPa and present a new model of the resistivity at high pressures and temperatures relevant to the Earth’s core. The model is compared with available shock wave data and theoretical studies. For a power law and linear temperature dependence of electrical resistivity, the calculated thermal conductivity at the core-mantle boundary is ~67–145W/m/K for pure Fe and ~41–60W/m/K for Fe–9wt % Si. Impurities in the core have a strong effect on the transport properties of iron that could significantly impact core thermal models. The models describing the data indicate higher thermal conductivity at core pressure than previously suggested, requiring additional energy sources in the past to operate the geodynamo. Citation: Seagle, C. T., E. Cottrell, Y. Fei, D. R. Hummer, and V. B. Prakapenka (2013), Electrical and thermal transport properties of iron and iron-silicon alloy at high pressure, Geophys. Res. Lett., 40, 5377–5381, doi:10.1002/2013GL057930.
منابع مشابه
Fabrication of Copper and Iron Nano/Micro Structures on Semiconducting Substrate and Their Electrical Characterization
In this paper, we have studied the electrical properties of the randomly distributed metallic (Co and Fe) nano/ micro wires on Silicon substrate. Deposition was carried out potentiostatically into the pores of the track-etch polycarbonate membrane spin coated onto the Si substrate. Spin coated films were irradiated with 150MeV Ni (+11) ions at a fluence of 8E7 ions/cm2, followed by UV irradiati...
متن کاملProducing the titanium nano composite statically compacted with the different pressure and investigation of the mechanical properties
Building the Nano composites for getting material with combinational properties and improving properties of currently used material has been taken significant attention. One of the ways of building Nano composites is using a method known as powder metallurgy. Because with this method not only wastes are decreased to minimum but we can also mix the materials with high melting point with the mate...
متن کاملAssessment of Foliar Application of Iron and Silicon on Some Agronomic, Quanti-tative and Qualitative Parameters of Potato (Solanum tuberosum L.)
This study aimed at evaluating some quantitative and qualitative properties of potato as one of the main commercial products in Iran. To this end, a split plot experiment on the basis of randomized complete bloke design with silicone and iron was carried out in jiroft as one of the commercial area of planting potatoes. The main factor included different levels of silicon (0, 10, 20, 30 mM.l-1) ...
متن کاملEffect of Aluminum on Microstructure and Thickness of Galvanized Layers on Low Carbon silicon-Free Steel
In hot dip galvanizing, several parameters such as chemical composition of coating bath, immersion time and surface roughness of specimens could affect microstructure and properties of coating. In this article, the effect of aluminum content, immersion time and surface roughness on structure and properties of alloy layers have been investigated. Specimens of low carbon silicon-free steel with d...
متن کاملPerformance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.
The development of silicon-based anodes with high capacity and good cycling stability for next-generation lithium-ion batteries is a very challenging task due to the large volume changes in the electrodes during repeated cycling, which results in capacity fading. In this work, we synthesized silicon alloy as an active anode material, which was composed of silicon nanoparticles embedded in Cu-Al...
متن کامل