Variational Integrators for Dynamical Systems with Rotational Degrees of Freedom

نویسندگان

  • THOMAS LEITZ
  • SINA OBER-BLÖBAUM
  • SIGRID LEYENDECKER
  • Thomas Leitz
  • Sina Ober-Blöbaum
  • Sigrid Leyendecker
چکیده

For the elastodynamic simulation of a geometrically exact beam, a variational integrator is derived from a PDE viewpoint. Variational integrators are symplectic and conserve discrete momentum maps and since the presented integrator is derived in the Lie group setting (unit quaternions for the representation of rotational degrees of freedom), it intrinsically preserves the group structure without the need for constraints. The discrete Euler-Lagrange equations are derived in a general manner and then applied to the beam.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Strain Based Cylindrical Shell Finite Element

The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...

متن کامل

Variational Integrators for Maxwell’s Equations with Sources

In recent years, two important techniques for geometric numerical discretization have been developed. In computational electromagnetics, spatial discretization has been improved by the use of mixed finite elements and discrete differential forms. Simultaneously, the dynamical systems and mechanics communities have developed structure-preserving time integrators, notably variational integrators ...

متن کامل

8 Variational Lie Group Formulation of Geometrically Exact Beam Dynamics: Synchronous and Asynchronous Integration

For the elastodynamic simulation of a geometrically exact beam [1], an asynchronous variational integrator (AVI) [2] is derived from a PDE viewpoint. Variational integrators are symplectic and conserve discrete momentum maps and since the presented integrator is derived in the Lie group setting (SO (3) for the representation of rotational degrees of freedom), it intrinsically preserves the grou...

متن کامل

A Linear-Time Variational Integrator for Multibody Systems

We present an efficient variational integrator for simulating multibody systems. Variational integrators reformulate the equations of motion for multibody systems as discrete Euler-Lagrange (DEL) equation, transforming forward integration into a root-finding problem for the DEL equation. Variational integrators have been shown to be more robust and accurate in preserving fundamental properties ...

متن کامل

Constructing Equivalence-preserving Dirac Variational Integrators with Forces

The dynamical motion of mechanical systems possesses underlying geometric structures, and preserving these structures in numerical integration improves the qualitative accuracy and reduces the long-time error of the simulation. For a single mechanical system, structure preservation can be achieved by adopting the variational integrator construction. This construction has been generalized to mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014