Large receptor reserve for cannabinoid actions in the central nervous system.
نویسندگان
چکیده
The receptor occupancy required to produce cannabinoid effects in the central nervous system was determined in both a neurochemical and a behavioral assay for cannabinoid actions. In the neurochemical experiments, performed on superfused rat hippocampal slices, electrically evoked [3H]acetylcholine release was inhibited by the cannabinoid agonist, WIN 55212 to 2 with an EC50 of 0.005 microM and maximum effect of 79%. In parallel experiments examining binding of the radiolabeled CB1 antagonist [131I]AM 281 (N-(morpholin-4-yl)-5-(4-[131I]iodophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) to living hippocampal slices, WIN 55212 to 2 inhibited [131I]AM 281 binding with an EC50 of 1.3 microM. From these two sets of data it was determined that 50% of maximal inhibition of [3H]acetylcholine release in hippocampal slices occurs at a receptor occupancy of only 0.13% and 95% of maximal inhibition at a receptor occupancy of 7.5%, suggesting the presence of a receptor reserve that is large compared with other G protein-coupled receptor systems in the central nervous system. In behavioral experiments, WIN 55212 to 2 inhibited spontaneous locomotor activity in mice with an ED50 of 0.3 mg/kg, i. v. In in vivo binding experiments using [131I]AM 281, WIN 55212 to 2 failed to produce significant inhibition of radiotracer binding in the mouse brains, except at very high doses (10 mg/kg or greater, i. v.). By contrast, the CB1 antagonist SR 141716A (10 mg/kg, i.p.), completely abolished specific [131I]AM 281 binding. These experiments suggest that behavioral effects of cannabinoids, like neurochemical effects, are produced at very low receptor occupancy.
منابع مشابه
Cannabinoid CB1 Receptors Mediate the Gastroprotective Effect of Neurotensin
Objective(s) Several lines of evidence indicate that neuropeptides exhibit protective properties against gastroduodenal ulcers. Neurotensin, a gut-brain neuropeptide, is implicated in a number of physiological processes in the central nervous system and peripheral tissues including gastrointestinal tract. In the present study, we aimed to investigate the gastroprotective potential of either p...
متن کاملDeletion of histidine decarboxylase (HDC) enhances the antinociceptive effects of orexin A in the central nervous system
It has long been established that histamine plays a role as a mediator of inflammation. From numerous studies, it has been well known that the amine has many pharmacological actions on a variety of organs. To evaluate the role of histamine in pain perception, we generated HDC knockout mice using a gene targeting method. Histamine is a hydrophilic autacoid, and in most tissues it is stored and s...
متن کاملSynaptic Targets of D-Tetrahydrocannabinol in the Central Nervous System
The availability of potent synthetic agonists for cannabinoid receptors has facilitated our understanding of cannabinoid actions on synaptic transmission in the central nervous system. Moreover, the ability of these compounds to inhibit neurotransmitter release at many central synapses is thought to underlie most of the behavioral effects of cannabinoid agonists. However, despite the widespread...
متن کاملSynaptic targets of Δ9-tetrahydrocannabinol in the central nervous system.
The availability of potent synthetic agonists for cannabinoid receptors has facilitated our understanding of cannabinoid actions on synaptic transmission in the central nervous system. Moreover, the ability of these compounds to inhibit neurotransmitter release at many central synapses is thought to underlie most of the behavioral effects of cannabinoid agonists. However, despite the widespread...
متن کاملP 17: Electrophysiological Effects of Cannabinoid Receptor Antagonist AM251 on Harmaline Toxicity in Rat’s Cerebellar Vermis Slices
Introduction: The Cannabinoid receptors (CBR) densities are high within the cerebellum. Cannabinoid receptors manipulations have been reported to cause altering the cerebellar functions. harmaline have immune-modulatory effects in several studies. i.e., significant anti-inflammatory effect via the inhibition of prostaglandin E2 (PGE2) and tumor necrosis factor alpha (TNF-α). Endocannabino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 288 2 شماره
صفحات -
تاریخ انتشار 1999