Neutrophil extracellular traps induce IL-1β production by macrophages in combination with lipopolysaccharide
نویسندگان
چکیده
Upon exposure to invading microorganisms, neutrophils undergo NETosis, a recently identified type of programmed cell death, and release neutrophil extracellular traps (NETs). NETs are described as an antimicrobial mechanism, based on the fact that NETs can trap microorganisms and exhibit bactericidal activity through the action of NET‑associated components. In contrast, the components of NETs have been recognized as damage‑associated molecular pattern molecules (DAMPs), which trigger inflammatory signals to induce cell death, inflammation and organ failure. In the present study, to clarify the effect of NETs on cytokine production by macrophages, mouse macrophage‑like J774 cells were treated with NETs in combination with lipopolysaccharide (LPS) as a constituent of pathogen‑associated molecular patterns. The results revealed that NETs significantly induced the production of interleukin (IL)‑1β by J774 cells in the presence of LPS. Notably, the NET/LPS‑induced IL‑1β production was inhibited by both caspase‑1 and caspase‑8 inhibitors. Furthermore, nucleases and serine protease inhibitors but not anti‑histone antibodies significantly inhibited the NET/LPS‑induced IL‑1β production. Moreover, we confirmed that caspase‑1 and caspase‑8 were activated by NETs/LPS, and the combination of LPS, DNA and neutrophil elastase induced IL‑1β production in reconstitution experiments. These observations indicate that NETs induce the production of IL‑1β by J774 macrophages in combination with LPS via the caspase‑1 and caspase‑8 pathways, and NET‑associated DNA and serine proteases are involved in NET/LPS‑induced IL‑1β production as essential components.
منابع مشابه
Neutrophil extracellular traps promote lipopolysaccharide-induced airway inflammation and mucus hypersecretion in mice
Bacterial lipopolysaccharide (LPS) contributes to airway inflammation and mucus hypersecretion in chronic airway inflammatory diseases, such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Neutrophil extracellular traps (NETs) are extracellular meshworks composed of DNA fibers and antimicrobial proteins. Although NET formation has been detected in COPD and CF patients,...
متن کاملPseudogout-associated inflammatory calcium pyrophosphate dihydrate microcrystals induce formation of neutrophil extracellular traps.
Pseudogout is an autoinflammatory condition triggered by calcium pyrophosphate dehydrate (CPPD) crystal deposition in the joints. The innate immune system is irritated by and responds to the presence of the crystals with an inflammatory response. The synovial fluid contains activated inflammatory macrophages and neutrophil granulocytes. Several details of crystal-induced macrophage activation w...
متن کاملRole of MicroRNAs in BCG Therapy by the Induction of Neutrophil Extracellular Traps in Bladder Cancer
The treatment of bladder cancer is usually performed by Bacillus Calmette-Guerin (BCG) instillation. BCG therapy is a common therapeutic method with fewer side effects compared with chemotherapy, radiotherapy, etc. BCG can also inhibit the progression and recurrence of bladder cancer by inducing apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formatio...
متن کاملMycobacterium tuberculosis- induced neutrophil extracellular traps activate human macrophages.
Neutrophils activated by Mycobacterium tuberculosis (Mtb) form neutrophil extracellular traps (NETs), containing DNA and several biologically active cytosolic and granular proteins. These NETs may assist in the innate immune defense against different pathogens. We investigated whether the NET-forming neutrophils mediate an activating signal to macrophages during the early multicellular inflamma...
متن کاملNeutrophil Extracellular Traps Reprogram IL-4/GM-CSF-Induced Monocyte Differentiation to Anti-inflammatory Macrophages
Monocyte-derived dendritic cells (mo-DCs) are essential for the development of a Th1 protective immune response against Leishmania parasites. It is well known that IL-4 and GM-CSF drive differentiation of human monocytes to dendritic cells (DCs). Here, we investigate if neutrophil extracellular traps (NETs) disrupt this process. NETs-enriched supernatants, generated after human neutrophil activ...
متن کامل