Conformal Structures and Period Matrices of Polyhedral Surfaces

نویسندگان

  • Alexander I. Bobenko
  • Christian Mercat
  • Markus Schmies
چکیده

The linear theory of discrete Riemann surfaces is applied to polyhedral surfaces embedded in R. As an application we compute the period matrices of some classical examples from the surface theory, in particular the Wente torus and the Lawson surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Period Matrices of Polyhedral Surfaces

Finding a conformal parameterization for a surface and computing its period matrix is a classical problem which is useful in a lot of contexts, from statistical mechanics to computer graphics. The 2D-Ising model [Mer01, CSM02, CSM03] for example can be realized on a cellular decomposition of a surface whose edges are decorated by interaction constants, understood as a discrete conformal structu...

متن کامل

Computing Conformal Structure of Surfaces

This paper solves the problem of computing conformal structures of general 2manifolds represented as triangle meshes. We compute conformal structures in the following way: first compute homology bases from simplicial complex structures, then construct dual cohomology bases and diffuse them to harmonic 1-forms. Next, we construct bases of holomorphic differentials. We then obtain period matrices...

متن کامل

Conformal Invariants : Period Matrices ∗

Abstract. This work introduces a system of algorithms to compute period matrices for general surfaces with arbitrary topologies. The algorithms are intrinsic to the geometry, independent of surface representation. The computation is efficient, stable and practical for real applications. The algorithms are experimented to real surfaces including human faces and sculptures, and applied for surfac...

متن کامل

Compact polyhedral surfaces of an arbitrary genus and determinants of Laplacians

Compact polyhedral surfaces (or, equivalently, compact Riemann surfaces with conformal flat conical metrics) of an arbitrary genus are considered. After giving a short self-contained survey of their basic spectral properties, we study the zeta-regularized determinant of the Laplacian as a functional on the moduli space of these surfaces. An explicit formula for this determinant is obtained.

متن کامل

Approximation of Polyhedral Surface Uniformization

We present a constructive approach for approximating the conformal map (uniformization) of a polyhedral surface to a canonical domain in the plane. The main tool is a characterization of convex spaces of quasiconformal simplicial maps and their approximation properties. As far as we are aware, this is the first algorithm proved to approximate the uniformization of general polyhedral surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0909.1305  شماره 

صفحات  -

تاریخ انتشار 2008