Light and growth form interact to shape stomatal ratio among British angiosperms.
نویسنده
چکیده
In most plants, stomata are located only on the abaxial leaf surface (hypostomy), but many plants have stomata on both surfaces (amphistomy). High light and herbaceous growth form have been hypothesized to favor amphistomy, but these hypotheses have not been rigorously tested together using phylogenetic comparative methods. I leveraged a large dataset including stomatal ratio, Ellenberg light indicator value, growth form and phylogenetic relationships for 372 species of British angiosperms. I used phylogenetic comparative methods to test how light and/or growth form influence stomatal ratio and density. High light and herbaceous growth form are correlated with amphistomy, as predicted, but they also interact; the effect of light is pronounced in therophytes (annuals) and perennial herbs, but muted in phanerophytes (shrubs and trees). Furthermore, amphistomy and stomatal density evolve together in response to light. Comparative analyses of British angiosperms reveal two major insights. First, light and growth form interact to shape stomatal ratio; amphistomy is common under high light, but mostly for herbs. Second, coordinated evolution of adaxial stomatal density and light tolerance indicates that amphistomy helps to optimally balance light acquisition with gas exchange. Stomatal ratio may have potential as a functional trait for paleoecology and crop improvement.
منابع مشابه
Ferns are less dependent on passive dilution by cell expansion to coordinate leaf vein and stomatal spacing than angiosperms
Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not...
متن کاملStomatal Blue Light Response Is Present in Early Vascular Plants.
Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss wi...
متن کاملStomatal Blue Light Response Is Present in Early Vascular Plants1[OPEN]
Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss wi...
متن کاملGenome size is a strong predictor of cell size and stomatal density in angiosperms.
Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of a...
متن کاملRoot phototropism: how light and gravity interact in shaping plant form.
The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 218 1 شماره
صفحات -
تاریخ انتشار 2018