Temperature responsive behavior of polymer brush/polyelectrolyte multilayer composites.
نویسندگان
چکیده
The complex interaction of polyelectrolyte multilayers (PEMs) physisorbed onto end-grafted polymer brushes with focus on the temperature-responsive behavior of the system is addressed in this work. The investigated brush/multilayer composite consists of a poly(styrene sulfonate)/poly(diallyldimethylammonium chloride) (PSS/PDADMAC) multilayer deposited onto the poly(N-isopropylacrylamide-b-dimethylaminoethyl methacrylate) P(NIPAM-b-DMAEMA) brush. Ellipsometry and neutron reflectometry were used to monitor the brush collapse with the thickness decrease as a function of temperature and the change in the monomer distribution perpendicular to the substrate at temperatures below, across and above the phase transition, respectively. It was found that the adsorption of PEMs onto polymer brushes had a hydrophobization effect on PDMAEMA, inducing the shift of its phase transition to lower temperatures, but without suppressing its temperature-responsiveness. Moreover, the diffusion of the free polyelectrolyte chains inside the charged brush was proved by comparing the neutron scattering length density profile of pure and the corresponding PEM-capped brushes, eased by the enhanced contrast between hydrogenated brushes and deuterated PSS chains. The results presented herein demonstrate the possibility of combining a temperature-responsive brush with polyelectrolyte multilayers without quenching the responsive behavior, even though significant interpolyelectrolyte interactions are present. This is of importance for the design of multicompartment coatings, where the brush can be used as a reservoir for the controlled release of substances and the multilayer on the top as a membrane to control the diffusion in/out by applying different stimuli.
منابع مشابه
Mechanomutable properties of a PAA/PAH polyelectrolyte complex: rate dependence and ionization effects on tunable adhesion strength
Advances in nanoscale processing and simulation have led to the capability to directly control the mechanical properties of a material through change of its structural makeup at the nanoscale. A novel class of mechanomutable materials in which mechanical properties can be both tunable and reversible via in situ modifications of a material’s nanostructure through stimuli such as pH, light, or el...
متن کاملTemperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point.
In this study, the effect of temperature on the build-up of exponentially growing polyelectrolyte multilayer films was investigated. It aims at understanding the multilayer growth mechanism as crucially important for the fabrication of tailor-made multilayer films. Model poly(L-lysine)/hyaluronic acid (PLL/HA) multilayers were assembled in the temperature range of 25-85 °C by layer-by-layer dep...
متن کاملLateral Structure Formation in Polyelectrolyte Brushes Induced by Multivalent Ions
We provide a theoretical model for the collapse of polyelectrolyte brushes in the presence of multivalent ions, focusing on the formation of lateral inhomogeneties in the collapsed state. Polyelectrolyte brushes are important in a variety of applications, including stabilizing colloidal particles and lubricating surfaces. Many uses rely on the extension of the densely grafted polymer chains fro...
متن کاملTemperature responsive polymer brushes with clicked rhodamine B: synthesis, characterization and swelling dynamics studied by spectroscopic ellipsometry†
Here, we report on a new temperature responsive polymer brush system with a terminal ‘‘click’’ functionality. Bifunctionalized poly(N-isopropylacrylamide) (PNiPAAm) with distinct functional end groups was synthesized by atom transfer radical polymerization (ATRP) and grafted to a modified silicon substrate. The presence of the active terminal alkyne functionality is validated using an azidemodi...
متن کاملGeometrically controlled mechanically responsive polyelectrolyte tube arrays.
IO N Over the last two decades, there has been extensive work on stimulus-responsive materials and structures that undergo actuation, swelling, variable permeability and wettability, and aggregation in the presence of external environmental stimulus, e.g., pH, ionic strength, temperature, and pressure. [ 1–4 ] However, the design, fabrication, characterization, and fundamental understanding of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 12 4 شماره
صفحات -
تاریخ انتشار 2016