An Autoregressive Approach to House Price Modeling

نویسندگان

  • Chaitra H. Nagaraja
  • Lawrence D. Brown
  • Linda H. Zhao
چکیده

A statistical model for predicting individual house prices and constructing a house price index is proposed utilizing information regarding sale price, time of sale, and location (ZIP code). This model is composed of a fixed time effect and a random ZIP (postal) code effect combined with an autoregressive component. The former two components are applied to all home sales while the latter is applied only to homes sold repeatedly. The time effect can be converted into a house price index. To evaluate the proposed model and the resulting index, single-family home sales for twenty U.S. metropolitan areas from July 1985 through September 2004 are analyzed. The model is shown to have better predictive abilities than the benchmark S&P/Case-Shiller model, which is a repeat sales model, and a conventional mixed effects model. Finally, Los Angeles, CA is used to illustrate a historical housing market crisis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonality and Forecasting of Monthly Broiler Price in Iran

The objective of this study was to model seasonal behavior of broiler price in Iran that can be used to forecast the monthly broiler prices. In this context, the periodic autoregressive (PAR), the seasonal integrated models, and the Box-Jenkins (SARIMA) models were used as the primary nominates for the forecasting model. It was shown that the PAR (q) model could not be considered as an appropri...

متن کامل

Draft (Do not quote) Spatial Econometric Approaches to Estimating Hedonic Property Value Models

The inclusion of spatial correlation of house price in hedonic pricing model may produce better marginal implicit price estimate(s) of the environmental variable(s) of interest. Most applications where a spatial econometric model is applied to the estimation of a hedonic property value model have used either a spatial lag model or a spatial autoregressive (SAR) error model. Incorrect spatial sp...

متن کامل

Iranian Tourism Demand for Malaysia: A Bound Test Approach

This paper investigate Iranian tourism demand to Malaysia using the recently developed autoregressive distributed lag (ARDL) ‘Bound test’ approach to cointegration for 2000:Q1 to 2013:Q4. The demand for tourism has been explained by macroeconomic variables, including income in Iran, tourism prices in Malaysia, tourism price substitute, travel cost and trade value between Iran and Malaysia. In a...

متن کامل

House Price Prediction Using LSTM

In this paper, we use the house price data ranging from January 2004 to October 2016 to predict the average house price of November and December in 2016 for each district in Beijing, Shanghai, Guangzhou and Shenzhen. We apply Autoregressive Integrated Moving Average model to generate the baseline while LSTM networks to build prediction model. These algorithms are compared in terms of Mean Squar...

متن کامل

پیش‌بینی قیمت مسکن برای شهر اهواز: مقایسه مدل هدانیک با مدل شبکه عصبی مصنوعی

Determination and the estimation of the house price in urban areas has a great importance for governments, individual and state investors and common people. The mentioned estimation can be used in future planning and decision making of many urban and regional policies. In this regard, due to the vital importance of the house price in recent decades powerful and effective functions have been use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010