Variations in Surface Air Temperature Observations in the Arctic, 1979–97
نویسندگان
چکیده
The statistics of surface air temperature observations obtained from buoys, manned drifting stations, and meteorological land stations in the Arctic during 1979–97 are analyzed. Although the basic statistics agree with what has been published in various climatologies, the seasonal correlation length scales between the observations are shorter than the annual correlation length scales, especially during summer when the inhomogeneity between the ice-covered ocean and the land is most apparent. During autumn, winter, and spring, the monthly mean correlation length scales are approximately constant at about 1000 km; during summer, the length scales are much shorter, that is, as low as 300 km. These revised scales are particularly important in the optimal interpolation of data on surface air temperature (SAT) and are used in the analysis of an improved SAT dataset called International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES). Compared to observations from land stations and the Russian North Pole drift stations, the IABP/POLES dataset has higher correlations and lower rms errors than previous SAT fields and provides better temperature estimates, especially during summer in the marginal ice zones. In addition, the revised correlation length scales allow data taken at interior land stations to be included in the optimal interpretation analysis without introducing land biases to grid points over the ocean. The new analysis provides 12-h fields of air temperatures on a 100-km rectangular grid for all land and ocean areas of the Arctic region for the years 1979–97. The IABP/POLES dataset is then used to study spatial and temporal variations in SAT. This dataset shows that on average melt begins in the marginal seas by the first week of June and advances rapidly over the Arctic Ocean, reaching the pole by 19 June, 2 weeks later. Freeze begins at the pole on 16 August, and the freeze isotherm advances more slowly than the melt isotherm. Freeze returns to the marginal seas a month later than at the pole, on 21 September. Near the North Pole, the melt season length is about 58 days, while near the margin, the melt season is about 100 days. A trend of 118C (decade)21 is found during winter in the eastern Arctic Ocean, but a trend of 218C (decade)21 is found in the western Arctic Ocean. During spring, almost the entire Arctic shows significant warming trends. In the eastern Arctic Ocean this warming is as much as 28C (decade)21. The spring warming is associated with a trend toward a lengthening of the melt season in the eastern Arctic. The western Arctic, however, shows a slight shortening of the melt season. These changes in surface air temperature over the Arctic Ocean are related to the Arctic Oscillation, which accounts for more than half of the surface air temperature trends over Alaska, Eurasia, and the eastern Arctic Ocean but less than half in the western Arctic Ocean.
منابع مشابه
Interannual Variations of Arctic Cloud Types in Relation to Sea Ice
Sea ice extent and thickness may be affected by cloud changes, and sea ice changes may in turn impart changes to cloud cover. Different types of clouds have different effects on sea ice. Visual cloud reports from land and ocean regions of the Arctic are analyzed here for interannual variations of total cloud cover and nine cloud types, and their relation to sea ice. Over the high Arctic, cloud ...
متن کاملVariable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years
[1] This letter offers new evidence motivating a more serious consideration of the potential Arctic temperature responses as a consequence of the decadal, multidecadal and longer-term persistent forcing by the ever-changing solar irradiance both in terms of total solar irradiance (TSI, i.e., integrated over all wavelengths) and the related UV irradiance. The support for such a solar modulator c...
متن کاملبررسی پارامترسازی عمق لایه پایدار شبانه و تاثیر آن در آلودگی هوای یک منطقه شهری با توپوگرافی پیچیده (تهران)
Mixing height of the atmospheric boundary depends on the vertical variation of temperature in the atmosphere which includes temperature inversion (including surface and elevated inversions) that has a significant effect on air quality. The mixing height like some other meteorological variables has diurnal variations. The reason for that is its dependence on some other basic meteorological param...
متن کاملWarming of the arctic ice-ocean system is faster than the global average since the 1960s
[1] Model results and observations both indicate warming of the world ocean from 1955 to 2003. Forced by reanalysis data, the model also shows that the warming of the arctic ice–ocean system is faster than the global average since the 1960s; there is a small but widespread increase in heat content of the Arctic Ocean’s waters and a larger increase of latent heat embodied in the ocean’s decreasi...
متن کاملEvaluation of a new temperature management system during off-pump coronary artery bypass.
OBJECTIVE We evaluated the performance of a new temperature management system (Arctic Sun, Medivance, Inc.) in maintaining normothermia during off-pump coronary artery bypass (OPCAB). PATIENTS AND METHODS Ninety-eight unselected patients were prospectively randomized to either a conventional temperature management method (consisting of a sterile forced-air warming blanket, warm intravenous fl...
متن کامل