A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase.
نویسندگان
چکیده
Lactate dehydrogenase from Bacillus stearothermophilus is specific for NAD+. There have been several attempts to alter the cofactor specificity of this enzyme, but these have yielded enzymes with relatively low activities that still largely prefer NAD+. A modified consensus approach was used to create a library of phylogenetically preferred amino acids situated near the cofactor binding site, and variants were screened for their ability to utilize NMN+. A triple mutant (Mut31) was discovered that proved to be more catalytically efficient than wild-type. Mut31 was also better at utilizing NAD+ than the wild-type enzyme and was weakly active with NADP+ and NMN+. An analysis of single amino acid substitutions suggested that all three mutations worked in a concerted fashion to yield robust cofactor utilization. When two previously identified amino acid substitutions were introduced into the Mut31 background, the resultant quintuply substituted enzyme not only utilized NADP+ far better than the wild-type enzyme, it actually inverted its preference for NAD+ and NADP+.
منابع مشابه
Protein engineering applications of industrially exploitable enzymes: Geobacillus stearothermophilus LDH and Candida methylica FDH.
Enzymes have become important tools in several industries due to their ability to produce chirally pure and complex molecules with interesting biological properties. The NAD(+)-dependent LDH (lactate dehydrogenase) [bsLDH [Geobacillus stearothermophilus (formerly Bacillus stearothermophilus) LDH] from G. stearothermophilus and the NAD(+)-dependent FDH (formate dehydrogenase) [cmFDH (Candida met...
متن کاملEngineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors
Engineering the cofactor specificity of a natural enzyme often results in a significant decrease in its activity on original cofactor. Here we report that a NADH-dependent dehydrogenase (d-LDH) from Lactobacillus delbrueckii 11842 can be rationally engineered to efficiently use both NADH and NADPH as cofactors. Point mutations on three amino acids (D176S, I177R, F178T) predicted by computationa...
متن کاملSubstitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity
Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with conside...
متن کاملNAD(H) recycling activity of an engineered bifunctional enzyme galactose dehydrogenase/lactate dehydrogenase
A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of appr...
متن کاملCrystal structure and amide H/D exchange of binary complexes of alcohol dehydrogenase from Bacillus stearothermophilus: insight into thermostability and cofactor binding.
The crystal structure of NAD(+)-dependent alcohol dehydrogenase from Bacillus stearothermophilus strain LLD-R (htADH) was determined using X-ray diffraction data at a resolution of 2.35 A. The structure of homotetrameric htADH is highly homologous to those of bacterial and archaeal homotetrameric alcohol dehydrogenases (ADHs) and also to the mammalian dimeric ADHs. There is one catalytic zinc a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein engineering, design & selection : PEDS
دوره 18 8 شماره
صفحات -
تاریخ انتشار 2005