Geometry of the extreme Kerr black hole

نویسنده

  • Bin Wang
چکیده

Geometrical properties of the extreme Kerr black holes in the topological sectors of nonextreme and extreme configurations are studied. We find that the Euler characteristic plays an essential role to distinguish these two kinds of extreme black holes. The relationship between the geometrical properties and the intrinsic thermodynamics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small deformations of extreme Kerr black hole initial data

We prove the existence of a family of initial data for Einstein equations which represent small deformations of the extreme Kerr black hole initial data. The data in this family have the same asymptotic geometry as extreme Kerr. In particular, the deformations preserve the angular momentum and the area of the cylindrical end.

متن کامل

Linear stability of rotating black holes: Outline of the proof

After a brief introduction to the black hole stability problem, we outline our recent proof of the linear stability of the non-extreme Kerr geometry.

متن کامل

Bound State Solutions of the Dirac Equation in the Extreme Kerr Geometry

In this paper we consider bound state solutions, i.e., normalizable time-periodic solutions of the Dirac equation in the exterior region of an extreme Kerr black hole with mass M and angular momentum J . It is shown that for each azimuthal quantum number k and for particular values of J the Dirac equation has a bound state solution, and that the energy of this Dirac particle is uniquely determi...

متن کامل

Time-Periodic Solutions of the Dirac Equation in the Extreme Kerr Geometry

In this paper we consider normalizable time-periodic solutions of the Dirac equation in an extreme Kerr black hole background with massM and angular momentum J . We prove that for particular values of J and given azimuthal quantum number k the Dirac equation has a bound state solution, and the one-particle energy of this solution is given by ω = − 2J . Moreover, we present some necessary and su...

متن کامل

Non-Existence of Time-Periodic Solutions of the Dirac Equation in an Axisymmetric Black Hole Geometry

We prove that, in the non-extreme Kerr-Newman black hole geometry, the Dirac equation has no normalizable, time-periodic solutions. A key tool is Chandrasekhar’s separation of the Dirac equation in this geometry. A similar non-existence theorem is established in a more general class of stationary, axisymmetric metrics in which the Dirac equation is known to be separable. These results indicate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998