Oligomerization of a MutS mismatch repair protein from Thermus aquaticus.
نویسندگان
چکیده
The MutS DNA mismatch protein recognizes heteroduplex DNAs containing mispaired or unpaired bases. We have examined the oligomerization of a MutS protein from Thermus aquaticus that binds to heteroduplex DNAs at elevated temperatures. Analytical gel filtration, cross-linking of MutS protein with disuccinimidyl suberate, light scattering, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry establish that the Taq protein is largely a dimer in free solution. Analytical equilibrium sedimentation showed that the oligomerization of Taq MutS involves a dimer-tetramer equilibrium in which dimer predominates at concentrations below 10 microM. The DeltaG(0)(2-4) for the dimer to tetramer transition is approximately -6.9 +/- 0.1 kcal/mol of tetramer. Analytical gel filtration of native complexes and gel mobility shift assays of an maltose-binding protein-MutS fusion protein bound to a short, 37-base pair heteroduplex DNA reveal that the protein binds to DNA as a dimer with no change in oligomerization upon DNA binding.
منابع مشابه
Heteroduplex DNA and ATP induced conformational changes of a MutS mismatch repair protein from Thermus aquaticus.
ATP hydrolysis by MutS homologues is required for the function of these proteins in mismatch repair. However, the function of ATP hydrolysis in the repair reaction is not very clear. We have examined the role of ATP hydrolysis in oligomerization of Thermus aquaticus (Taq) MutS protein in solution. Analytical gel filtration and cross-linking of MutS protein with disuccinimidyl suburate suggest t...
متن کاملMismatch repair: The praying hands of fidelity
High-resolution crystal structures have recently been solved for the mismatch binding protein MutS of Escherichia coli and its Thermus aquaticus homologue; they show how these factors recognise such structurally diverse substrates as base-base mismatches and insertion/deletion loops.
متن کاملCrystal structure and biochemical analysis of the MutS.ADP.beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair.
During mismatch repair ATP binding and hydrolysis activities by the MutS family proteins are important for both mismatch recognition and for transducing mismatch recognition signals to downstream repair factors. Despite intensive efforts, a MutS.ATP.DNA complex has eluded crystallographic analysis. Searching for ATP analogs that strongly bound to Thermus aquaticus (Taq) MutS, we found that ADP....
متن کاملContribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.
Previous analyses of both Thermus aquaticus MutS homodimer and Saccharomyces cerevisiae Msh2-Msh6 heterodimer have revealed that the subunits in these protein complexes bind and hydrolyze ATP asymmetrically, emulating their asymmetric DNA binding properties. In the MutS homodimer, one subunit (S1) binds ATP with high affinity and hydrolyzes it rapidly, while the other subunit (S2) binds ATP wit...
متن کاملMutL traps MutS at a DNA mismatch.
DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (β-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 33 شماره
صفحات -
تاریخ انتشار 1999