Cessation of daily wheel running differentially alters fat oxidation capacity in liver, muscle, and adipose tissue.

نویسندگان

  • Matthew J Laye
  • R Scott Rector
  • Sarah J Borengasser
  • Scott P Naples
  • Grace M Uptergrove
  • Jamal A Ibdah
  • Frank W Booth
  • John P Thyfault
چکیده

Physical inactivity is associated with the increased risk of developing chronic metabolic diseases. To understand early alterations caused by physical inactivity, we utilize an animal model in which rats are transitioned from daily voluntary wheel running to a sedentary condition. In the hours and days following this transition, adipose tissue mass rapidly increases, due in part to increased lipogenesis. However, whether a concurrent decrease in fatty acid oxidative capacity (FAO) in skeletal muscle, liver, and adipose tissue occurs during this period is unknown. Following 6 wk of access to voluntary running wheels (average distance of approximately 6 km a night), rats were rapidly transitioned to a sedentary state by locking the wheels for 5 h (WL5) or 173 h (WL173). Complete ([(14)C]palmitate oxidation to (14)CO(2)) and incomplete ([(14)C]palmitate oxidation to (14)C-labeled acid soluble metabolites) was determined in isolated mitochondrial and whole homogenate preparations from skeletal muscle and liver and in isolated adipocytes. Strikingly, the elevated complete FAO in the red gastrocnemius at WL5 fell to that of rats that never ran (SED) by WL173. In contrast, hepatic FAO was elevated at WL173 above both WL5 and SED groups, while in isolated adipocytes, FAO remained higher in both running groups (WL5 and WL173) compared with the SED group. The alterations in muscle and liver fat oxidation were associated with changes in carnitine palmitoyl transferase-1 activity and inhibition, but not significant changes in other mitochondrial enzyme activities. In addition, peroxisome proliferator-activated receptor coactivator-1alpha mRNA levels that were higher in both skeletal muscle and liver at WL5 fell to SED levels at WL173. This study is the first to demonstrate that the transition from high to low daily physical activity causes rapid, tissue-specific changes in FAO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running a...

متن کامل

Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running

In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcr...

متن کامل

A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice.

Exercise effectively prevents the development of obesity and obesity-related diseases such as type 2 diabetes. Capsinoids (CSNs) are capsaicin analogs found in a nonpungent pepper that increase whole body energy expenditure. Although both exercise and CSNs have antiobesity functions, the effectiveness of exercise with CSN supplementation has not yet been investigated. Here, we examined whether ...

متن کامل

Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice.

Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are essential for efficient lipolysis in adipose tissue and skeletal muscle. Herein, we utilized whole body knockout mice to address the importance of ATGL and HSL for metabolic function and exercise performance. ATGL deletion severely disrupts whole-body substrate partitioning at rest; reducing plasma free fatty acid (FFA...

متن کامل

Correction: Free Access to a Running-Wheel Advances the Phase of Behavioral and Physiological Circadian Rhythms and Peripheral Molecular Clocks in Mice

Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2009