Singularities of 2θ-divisors in the Jacobian

نویسنده

  • C. Pauly E. Previato
چکیده

Let C be a smooth, connected, projective non-hyperelliptic curve of genus g ≥ 2 over the complex numbers and let Pic(C) be the connected component of its Picard variety parametrizing degree d line bundles, for d ∈ Z. The variety Pic(C) carries a naturally defined divisor, the Riemann theta divisor Θ, whose support consists of line bundles that have nonzero global sections. The Riemann singularity theorem describes the singular locus of the divisor Θ as

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subvarieties of Su C (2) and 2θ-divisors in the Jacobian

Let SUC(2, L) denote the projective moduli variety of semistable rank 2 vector bundles with determinant L ∈ Pic(C) on a smooth curve C of genus g > 2; and suppose that degL is even. It is well-known that, on the one hand, the singular locus of SUC(2, L) is isomorphic to the Kummer variety of the Jacobian; and on the other hand that when C is nonhyperelliptic SUC(2,O) has an injective morphism i...

متن کامل

The Tangent Space to the Moduli Space of Vector Bundles on a Curve and the Singular Locus of the Theta Divisor of the Jacobian

We complete the proof of the fact that the moduli space of rank two bundles with trivial determinant embeds into the linear system of divisors on PicC which are linearly equivalent to 2Θ. The embedded tangent space at a semi-stable non-stable bundle ξ ⊕ ξ, where ξ is a degree zero line bundle, is shown to consist of those divisors in |2Θ| which contain Sing(Θξ) where Θξ is the translate of Θ by...

متن کامل

eo m / 9 70 30 26 v 1 2 1 M ar 1 99 7 Heisenberg invariant quartics and SU C ( 2 ) for a curve of genus four

The projective moduli variety SUC(2) of semistable rank 2 vector bundles with trivial determinant on a smooth projective curve C comes with a natural morphism φ to the linear series |2Θ| where Θ is the theta divisor on the Jacobian of C. Well-known results of Narasimhan and Ramanan say that φ is an isomorphism to P if C has genus 2 [16], and when C is nonhyperelliptic of genus 3 it is an isomor...

متن کامل

On real generalized Jacobian varieties

In this note, we study effective Cartier divisors with totally real or totally complex supports on a projective curve over R. We give some numerical conditions for an invertible sheaf to be isomorphic or not to such a divisor. We show that these conditions are strongly related to the singularities of the curve and to topological properties of the real part of the Jacobian variety.

متن کامل

An inflectionary tangent to the Kummer variety and the Jacobian condition

In this paper we deal with a degenerate version of the trisecant conjecture (see Welters [W1]). Let (X , [Θ]) be an indecomposable principally polarized abelian variety and let Θ be a symmetric representative of the polarization. We shall denote by θ a non-zero section of the sheaf O X (Θ). The linear system |2Θ| is base-point-free and it is independent of the choice of Θ. The image of the morp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998