Lê Numbers of Arrangements and Matroid Identities

نویسندگان

  • David B. Massey
  • Rodica Simion
  • Richard P. Stanley
  • Dirk L. Vertigan
  • Dominic J. A. Welsh
  • Günter M. Ziegler
چکیده

We present several new polynomial identities associated with matroids and geometric lattices, and relate them to formulas for the characteristic polynomial and the Tutte polynomial. The identities imply a formula for the L^ e numbers of complex hyperplane arrangements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Upper Bound Conjecture for Arrangements of Halfspaces

Let A be an arrangement of n open halfspaces in R. In [2], Linhart proved that for r ≤ 5, the numbers of vertices ofA contained in at most k halfspaces are bounded from above by the corresponding numbers of C(n, r), where C(n, r) is an arrangement realizing the alternating oriented matroid of rank r on n elements. In the present paper Linhart’s result is generalized to faces of dimension s− 1 f...

متن کامل

New algorithms for linear k-matroid intersection and matroid k-parity problems

We present algorithms for the k-Matroid Intersection Problem and for the Matroid k-Pafity Problem when the matroids are represented over the field of rational numbers and k > 2. The computational complexity of the algorithms is linear in the cardinality and singly exponential in the rank of the matroids. As an application, we describe new polynomially solvable cases of the k-Dimensional Assignm...

متن کامل

Rogers-ramanujan Type Identities for Alternating Knots

We highlight the role of q-series techniques in proving identities arising from knot theory. In particular, we prove Rogers-Ramanujan type identities for alternating knots as conjectured by Garoufalidis, Lê and Zagier.

متن کامل

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Lê Modules and Traces

We show how some of our recent results clarify the relationship between the Lê numbers and the cohomology of the Milnor fiber of a non-isolated hypersurface singularity. The Lê numbers are actually the ranks of the free Abelian groups – the Lê modules – appearing in a complex whose cohomology is that of the Milnor fiber. Moreover, the Milnor monodromy acts on the Lê module complex, and we descr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 70  شماره 

صفحات  -

تاریخ انتشار 1997