Backward difference time discretization of parabolic differential equations on evolving surfaces

نویسندگان

  • Christian Lubich
  • Dhia Mansour
  • Chandrasekhar Venkataraman
چکیده

A linear parabolic differential equation on a moving surface is discretized in space by evolving surface finite elements and in time by backward difference formulas (BDF). Using results from Dahlquist’s G-stability theory and Nevanlinna & Odeh’s multiplier technique together with properties of the spatial semi-discretization, stability of the full discretization is proven for the BDF methods up to order 5 and optimal-order convergence is shown. Numerical experiments illustrate the behaviour of the fully discrete method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Methods for Parabolic Equations

The initial-boundary value problem for a linear parabolic equation with the Dirichlet boundary condition is solved approximately by applying the finite element discretization in the space dimension and three types of finite-difference discretizations in time: the backward, the Crank-Nicolson and the Calahan discretization. New error bounds are derived.

متن کامل

Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations

Quasi-linear parabolic equations are discretised in time by fully implicit backward difference formulae (BDF) as well as by implicit–explicit and linearly implicit BDF methods up to order 5. Under appropriate stability conditions for the various methods considered, we establish optimal order a priori error bounds by energy estimates, which become applicable via the Nevanlinna-Odeh multiplier te...

متن کامل

Solving 2 nd order parabolic system by simulations of Markov jump processes ∗

There are known methods of approximating the solution of parabolic 2 order systems by solving stochastic differential equations instead. The main idea is based on the fact that a stochastic differential equation defines a diffusion process, generated by an elliptic differential operator on Rd. We propose a difference scheme for the elliptic operator, which possesses the structure of Markov (jum...

متن کامل

Convergence of a Full Discretization of Quasi-linear Parabolic Equations in Isotropic and Anisotropic Orlicz Spaces

Abstract. Convergence of a full discretization is shown for a general class of nonlinear parabolic November 10, 2011 problems. The numerical method combines the backward Euler method for the time discretization with a generalized internal approximation scheme for the spatial discretization. The governing monotone elliptic differential operator is described by a nonlinearity that may have anisot...

متن کامل

Singularly Perturbed Parabolic Differential Equations with Turning Point and Retarded Arguments

In this article we propose an efficient numerical scheme based on a Shishkin mesh for a class of singularly perturbed parabolic convection-diffusion problems with boundary turning point and retarded arguments. The solution of the considered problem exhibit a boundary layer on the left side of the domain. The continuous problem is semidiscretized by means of backward Euler finite difference meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013