A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution
نویسندگان
چکیده
A useful discrete distribution (the Conway–Maxwell–Poisson distribution) is revived and its statistical and probabilistic properties are introduced and explored. This distribution is a two-parameter extension of the Poisson distribution that generalizes some well-known discrete distributions (Poisson, Bernoulli and geometric). It also leads to the generalization of distributions derived from these discrete distributions (i.e. the binomial and negative binomial distributions). We describe three methods for estimating the parameters of the Conway–Maxwell–Poisson distribution. The first is a fast simple weighted least squares method, which leads to estimates that are sufficiently accurate for practical purposes. The second method, using maximum likelihood, can be used to refine the initial estimates. This method requires iterations and is more computationally intensive. The third estimation method is Bayesian. Using the conjugate prior, the posterior density of the parameters of the Conway–Maxwell–Poisson distribution is easily computed. It is a flexible distribution that can account for overdispersion or underdispersion that is commonly encountered in count data. We also explore two sets of real world data demonstrating the flexibility and elegance of the Conway–Maxwell–Poisson distribution in fitting count data which do not seem to follow the Poisson distribution.
منابع مشابه
Extended Conway-Maxwell-Poisson distribution and its properties and applications
A new four parameter extended Conway-Maxwell-Poisson (ECOMP) distribution which unifies the recently proposed COM-Poisson type negative binomial (COM-NB) distribution [Chakraborty, S. and Ong, S. H. (2014): A COM-type Generalization of the Negative Binomial Distribution, Accepted in Communications in Statistics-Theory and Methods] and the generalized COM-Poisson (GCOMP) distribution [Imoto, T. ...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملCharacterizing the performance of the Conway-Maxwell Poisson generalized linear model.
Count data are pervasive in many areas of risk analysis; deaths, adverse health outcomes, infrastructure system failures, and traffic accidents are all recorded as count events, for example. Risk analysts often wish to estimate the probability distribution for the number of discrete events as part of doing a risk assessment. Traditional count data regression models of the type often used in ris...
متن کاملFitting Com-Poisson Mixtures to Bimodal Count Data
Bi-modal truncated count distributions are frequently observed in aggregate surveys and ratings when respondents are mixed in their opinion. They also arise in censored count data, where the highest category might create an additional mode. The Poisson distribution is the most common distribution for fitting count data and can be modified to achieve mixtures of truncated Poisson distributions. ...
متن کاملBivariate Conway-Maxwell-Poisson distribution: Formulation, properties, and inference
The bivariate Poisson distribution is a popular distribution for modeling bivariate count data. Its basic assumptions and marginal equi-dispersion, however, may prove limiting in some contexts. To allow for data dispersion, we develop here a bivariate Conway–Maxwell–Poisson (COM–Poisson) distribution that includes the bivariate Poisson, bivariate Bernoulli, and bivariate geometric distributions...
متن کامل